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A general method for constructing a generating function for all irreducible polynomial tensors, with

respect to a given compact semisimple group, out of a given set of tensors is derived. The method is
applied to the construction of polynomial bases for the IR’s of a group reduced according to a subgroup
and to the finding of subgroup scalars in the enveloping algebra of a group. A number of examples are

worked out.

1. INTRODUCTION

The problem of finding all irreducible tensors, with
respect to a compact semisimple group, whose com-
ponents are polynomials in the components of one or
more given tensors is considered. These tensors are
described implicitly by a generating function expressed
in terms of an integrity basis, i.e., a finite number of
“elementary” tensors in terms of which all may be ex-
pressed as stretched products. The method is a gen-
eralization of that used by Judd, Miller, Patera, and
Winternitz! to find O(3) invariant polynomials in the
generators of SU(3).

The technique is applied to the problem of construct-
ing all such subgroup invariants contained in the en-
veloping algebra of a semisimple group. It is usually
advantageous to divide the group generators first into
two sets of subgroup tensors.? Next find all subgroup
tensors which are polynomials in the tensors of each
set (the problem addressed by this article). Subgroup
scalars correspond to contractions of tensors, one
from each set, which transform by conjugate subgroup
IR’s.

A second type of example concerns the construction
of polynomial bases of a group. Such bases may be
chosen as polynomials in the states of the fundamental
IR’ s; the degrees in the fundamental IR’s are the Car-
tan labels of the IR to which a particular polynomial
belongs. When the bases are reduced according to
some semisimple subgroup, the states are just sub-
group tensors whose components are polynomials in the
tensors comprising the fundamental IR’s. A complica-
tion here is the necessity of eliminating unwanted
states, i.e., polynomials belonging to group IR’s lower
than their degrees would indicate. The members of the
resulting integrity basis are the elementary multiplets®
(elementary permissible diagrams of Devi and
Moshinsky?) which generate all subgroup multiplets
belonging to all group IR’s and hence solve the corre-
sponding labeling problem.

Section 2 contains a description of the general
method with a few simple examples.

In Sec. 3 we derive integrity bases for O(5) polynom-
ial bases reduced according to SU(2).

In Sec. 4 we find an integrity basis for SU(2) scalars
in the enveloping algebra of O(5) and for SU(2) X SU(2)
scalars in the enveloping algebra of G,; the latter is
shown to be simply related to an integrity basis for
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0O(5) O SU(2) polynomial bases, discussed in Sec. 3. We
also consider briefly the integrity basis for SU(2)
X8U(2) scalars in the enveloping algebra of SU(4).

Section 5 contains a discussion of the results and
suggestions for further work.

2. GENERATING FUNCTIONS FOR TENSORS

As a simple example, consider the problem of finding
all SU(2) tensors whose components are polynomials in
the components of a single A =3 (j =3) tensor U. A gen-
erating function for SU(2) weights is

(1= o - Up - U™ - Und)]Y (1)

the coefficient of U’ is the number of terms of degree
a in U and weight b (the weight here is, to avoid frac-
tions, twice the conventional m value). The generating
function for tensors belonging to the IR A (highest weight
A, lowest weight — 1) is the coefficient of 7™ minus the
coefficient of 7™ (the subtraction eliminates the con-
tribution of higher tensors). Formally this difference

is found by multiplying by n*-! = 7**! and summing resi-
dues inside the unit 7 circle (1U ! <1 for this purpose).

To keep track simultaneously of tensors belonging to
all IR’s multiply as well by A* and sum over A from 0
to <, The result is

2 (" =l = Un’)1 - Un)(1 = Un™)
X (1= Uyt - An)]*, @)

where > .., means the sum of residues inside the unit
circle (lAl, U] <1). The result is the generating
function

G(U,A)=(1 + U343 (1 = UA®)(1 - 12AY)(1 - UH]T, (3)

The coefficient of U*A* in G is the number of linearly
independent tensors of degree @ and IR X. The generat-
ing function (3) may be interpreted in terms of four
“elementary” tensors whose degrees and IR’s are re-
spectively (1,3), (2,2), (4,0), (3,3). They constitute an
integrity basis for tensors formed from the components
of U. Explicit expressions for the elementary tensors
as polynomials in the components of U are easily found.
That UA? appears in the numerator of G implies that
the (stretched) square of the corresponding tensor is a
sum of (stretched) products of the others and hence
redundant [(3, 3)?=A4(2, 2)* + B(1, 3)*(4, 0)]. The four ten-
sors are just the elementary multiplets for the IR’s

(A, 0) of O(5) reduced according to SU(2).°
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More generally, consider a generating function
F(ny,...,m;) for weights with respect to a group G of
rank /; we may assume the weights are those of com-
plete IR’s and write

F)= 20 Xayueun, (M Ny, @
13

where yx, is the character of the IR X; N, is essentially
the multiplicity of » in F, and may depend on other
dummy variables such as U in Eq. (1).

We recall that the character X» may be expressed in
terms of the characteristic £, by the relation®

X = £/, (5)

A is the characteristic of the scalar IR. Thus, Eq. (4)
becomes

AMFM =D b ,...n, (M (6)

Let ITjn;¥: be the term of lowest weight in £,(n); the M,
depend linearly on %,...,)\; and we suppose that the
coordinates in weight space are chosen so that the co-
efficients of the X’s in M, are all integers. Now multi-
ply Eq. (6) by [1;n¥i-'A}i and sum over A, ..., %, from 0
to ©, The sums being geometric may be done explicitly.
Finally we sum all residues inside the unit circles of
My «.+, M, regarding A;, and the dummy variables
which carry the degrees of the original tensors, as be-
ing less than unity in magnitude,

For definiteness we demonstrate the procedure for
SU(n); other semisimple compact groups are treated
similarly. We may write®

=], a= ot ™

where la;;| means the # Xn determinant whose 7j ele-
ment is a;;. The I’s are related to the Cartan labels by

n=i

=2 N +n=g, 1,=0; @)
k=i
also
o= (Mg * * * )™ 9)
We take the term of lowest weight in £ to be
n-1 nei
N 77 Tt 200, (10)
i=t
Thus if F(1,...,7;) is some generating function for

SU() weights, the corresponding generating function
for SU(n) tensors is

A(jEnrt
2 F(ny, ..., ). 11)
E T = AL ) (my , ) (

For n =2 this reduces to the prescription given above
for SU(2).

We list a few simple generating functions for tensors
which are polynomials in the components of one or more
simple tensors. In each case the integrity basis is easi-
ly inferred from the generating function.

(a) SU(2), r==4 (j=2), tensor U:
G(U,A) =1 +UBA%/(1 - UAY(1 - VA (1 - UH( - T3).
(12)
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In a case like this, where only even weights (integer m)
are involved, the method may be modified by halving
all weights. The effect on the generating function is to
replace A% by A, With an additional denominator factor
1- A%, Eq. (12) is then the generating function for
scalars found from a j =2 tensor U and a vector A and
agrees with that given in Ref. 1,

(b) SUQ), r=2 (j=1) vector U-and x=1 (j=3%), spin-
or V:
G(U,V,A)=(1+UVA)/(1 - U1 - UV)(1 - UA?)

X (1 - VA). (13)
(c) sSU(2), two vectors U and V:
GU,V,A) =1 +UVAY)/(1 = U (1 - VE(1 = UV)
X (1 = UA?)(1 = VA?), (14)

(d) SU(2)%8U(2), a (10) spinor U, a (01) spinor V,
a (11) quartet W:

GW,V,W,A,B)=[(1-WAB)'+UVW({1 - UVW)™]
x[(1 =UA)1 = VB)(1-W?)
X {1 = UWB)(1 = VWA)]", (15)

The indices of the dummies A, B are the SU(2) XSU(2)
representation labels of the tensors.

(e) SU(3), (1,1) octet U:
G(U, A, A,)
=(1+U%A,4, +U'Al4))
x[(1 - UA,A,) (1= UH(1-U?)
X (1= USAH(1 - VAT (16)

This generating function is closely related so that for
8U(3) scalars in the enveloping algebra of G,.?

We turn to the problem of determining a generating
function for multiplets of a subgroup H occurring in
IR’s of a group G. Start with the character
Xuln---utc(m’ «+.;7;,) of the group G. It depends on only
1, variables 7 because the projection corresponding to
the reduction G2 H has been carried out on the coordi-
nates 7 in weight space, We may write

Xty () = Equy ()/ B () amn
The G-representation labels uy, ..., 4, in £(u) occur
linearly in the exponents of the n’s, with integer coeffi-
cients. Now multiply Eq. (17) by U;'0; %+ U6 and
Sum OVer Hy, ..., Hs; only geometric series are in-
volved. The result may be written

X(U)(n):?}(f-l Uf’)éfu}(n)/%(n)- (18)

14 1
It is a generating function for subgroup weights in the
IR’s of the group G. Now proceed as before. Multiply
X)) by Ag(n) [the division of 3, [1,U; )&, (n) by
Ag(n)/ B 4(n) should be done explicitly, although the de-
tails are complicated except in relatively simple cases])
and by Z(X}H,n:’i'iA:". Finally add all n-residues inside
the unit circles. The result is a generating function
GUsenes Uy Ayyees ,A,H) for subgroup multiplets
My ey A,H) in group IR’s (Ky,..., H;,). If the generat-
ing function can be interpreted in terms of an integrity
basis we have a solution of the corresponding internal
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labeling problem. A few simple examples follow. They (iii) O(7) > G,

agree with the integrity bases given in Refs, 3 and 6. G =[(1 = U UsAy)™ +UpA, (1 = Upd,)!]
(1) 8U(3)=063) X[(1= Uy)(1 =~ UsA,)(1 = UA1)(1 =~ Uzdy)
G=(1+UU,A%/(1-U,A%(1 - U1 - U,A)(1 = U)). X (1= U, UpA )], (1)
(19)

Uy, U,, Us are associated respectively with the 7-, 21-,
(i) G, 2 SU(3) 8-dimensional fundamental IR’s of O(7); A{, A, with the
-1 4 7-, 14-dimensional fundamental IR’s of G,. The gen-
G=[1-U)" +UpA:14,(1 = UpAi4)"] erating function (21) verifies the integrity basis for
X[(1 = U,A)(1 = U,4,)(1 = UpA )1 - UA)TL. (20) | O(7)> G, states proposed by Wybourne. ¢

3. ELEMENTARY MULTIPLETS FOR 0O(5) DSU(2) STATES

Identical particles in the I =2 shell may be described in terms of O(5) basis states reduced according to O(3)
~8U(2). "% Actually only the nonspinor IR’s of O(5) are needed in the shell problem. We give two solutions of the
labeling problem in terms of elementary multiplets, the first valid for all IR’s of O(5), the second applicable to
integer spins only.

Using the technique described in the preceding section we arrive at the following generating function for SU(2)
weights contained in IR’s of O(5):

(A + U1 + U,) = U, Up( +n+ 07 +17%)
Q=-U QA -UmA-Un (1 =-Un™)A =-UnH1 - Un))A=Upn™®) A = U™ °

The coetficient of U}!Uy2n® in F is the multiplicity of the SU(2) weight b in the IR (\,\,) of O(5).
1 Y2

F(U“Uz,’r])z (22)

To derive a generating function for SU(2) multiplets in IR’s of O(5), one must multiply Eq. (22) by (n71=n)
X (1= An)"! and add the residues of poles with | <1. Although straightforward in principle, this is a nontrivial
task, and is discussed in the Appendix. The result may be written

G(U, Uy, A)=[(1 = U1 - U)(A = U, AY {1 + U U,A + UFUZA + U, UL A%+ (U ULA P + USUS + UBA®
+(U U, A UAY TR (1 - U2AY (1 = UIU3)] +[UIA? + USAR + UIUEAY + (U A®) (U, U,A)?
+ (UANURUAY) + U ANUUANUIAD] (1 - U AN (1 - VAT +[U1A% + U U,A7 + (U, U,A)(U,A7)
+ (UIA?)(URAY) + (U U, ANU,URA®) + (U2AYNU,U,A)] [ (1 - U,A%)(1 - U3AY) ] + [(UU,A4) + (U5URA)
+ ULULA? + (UIAY)(UUR) + UTULAY + (U ULA)? + (USULANUULA) + (U U,A)(URA?) + (U, U,A)USUSA)
+ (UANGV3A) + (U U A (UU,A) + (U, 0,A) U U,4H)] [(1 - U3A%)(1L - U{U)] ). (23)

The generating function (23) may be interpreted in terms of nineteen elementary muiltiplets [the notation is
(A;},2) where (Aj};) are the IR labels for O(5) and X the SU(2) label]:

(014), (024), (030), (036), (103), (111), (115), (123), (202), (212), (224), (303), (311), (321), (400), (412), (420},
(521), (630). (24)

The form of Eq. (24) indicates that the following products of elementary multiplets should be discarded, in order
to avoid redundant states:

(024) with any of (212), (224), (303), (311), (412), (521), (202)*, (111)(202) or (111)(321);
(420) with any of (103), (115), (224), (303) or (111)(123);
(103) with any of (036), (123), (311), (321), (412), (521), (111)° or (111)(212);
(202) with any of (321), (123), (630), (036), (115) or (111)°; (111)® with (311);
(111)? with (123), (212) or (321); (111) with (036), (115), (224), (303), (412), (521) or (630); (111)%;
the product of any two, or the square of any one of (036), (115), (123), (212), (224),
(303), (311), (321), (412), (521) or (630).
Stone® has given the branching rules for O(5)> SU(2) but has not solved the labeling problem.

The only IR’s of O(5) required for spectroscopy are the integer spin IR’s (A; even). Retaining the part of G which
is even in U, yields a generating function for integer spin IR’s:

G'(Uy, Uy A)=[(1 = U1 = UN(A = U,AN] {1 + USUS + U3A® + (U3 URA(UEAY(ULUD] [(1 - UBAY) (1 = UAUE)]
+[UIA? + UA® + UIUBA* + (UAS)(UIUBAY) + (UAS)(UAU,A) + (BAY)(URU,A %] [(1 — U3AS)(1 = U2AD) ]
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+[UIA® + URU,A® + URU,AY + UIUBA + (U3AR)(U2AY) + (URAYURUEAD)I[ (1 - U3AS)(1 - UZAY) ]
+[U{0,4% + UiU,A% + UURA? + UURA? + UUPA? + (UAD(UIAD ] (1 ~ 124D (1 - UiUd)] . (25)

The interpretation of (25) in terms of an integrity basis is immediate, Again there are nineteen elementary

multiplets:

(014), (024), (030), (036), (202), (206), (212), (214), (218), (222),

(26)

(224), (234), (400), (406), (412), (420), (422), (432), (630).

Redundant states are avoided if the following products of elementary multiplets are excluded: (024) with any of

(202), (212), (224), (408), (412), (422), (432), (202)(222) or (202)(420); (420) with any of (206), (214), (218), (224),
(234) or (406); (206) with any of (036), (212), (422), (432) or (630); (202) with any of (036), (218), (234) or (830); the
product of any two or square of any one of (036), (212), (214), (218), (222}, (224), (234), (406), (412), (422), (432)

or (630).

4. SUBGROUP SCALARS IN GROUP ENVELOPING
ALGEBRA

Often it is useful to know all subgroup scalars, be-
sides the Casimir operators of group and subgroups,
which are polynomials in the group generators. They
commute with the Casimir operators, and so may serve
as missing label operators. The operator properties of
the generators may be ignored for the purpose of finding
these subgroup scalars. We suppose the terms in the
polynomials are symmetrized as to order of the fac-
tors—an unsymmetrized term differs from the corre-
sponding symmetrized one by a polynomial of lower
degree.

We consider three cases, G,28U(2)x8U(2), O(5)
> 8U(2), and SU{4) D SU(2)XSU(2). In each case there are
two missing labels, and hence four functionally indepen-
dent available missing label operators.? Cases with one
missing label have been considered earlier.?

(a) G, SU(2)XSU(2)

The group generators decompose into two SU(2) vec-
tors, S and 7, the subgroup generators, and a (3,1)
subgroup tensor V with eight components. Apart from
the subgroup Casimir operators, subgroup scalars cor-
respond one-to-one to even rank {integer spin) tensors
formed from the components of V.,

A generating function for SU(2)XSU{2) tensors in the
components of V may be found directly by the methods
of this article. However, one can also proceed indirec-
tly. Regard the components of V as bases of the defining
IR of SU(B). Then tensors of degree X in V correspond
to SU(2)XSU(2) multiplets in the IR (A000000) of SU(8).
Now SU(2) XSU(2) is not a maximal subgroup of SU(8) but
occurs in the chain SU(8) 2 O(5) XSU(2) 2 SU(2) XSU(2);
hence the problem may be solved in two steps. The
generating function for O(5)xSU(2) multiplets contained
in (A000000) IR’s of SU(8) is easily seen to be

[(1-V)(1-V?U,)1 - VU,B)]!
=(1- V¥t 2 ymnyiympm, 27)

where the factors UTU3B™ correspond to the IR (mn;m)
of O(5)X8SU(2). Now let

G(U,, Uy, A) = 25 UPULZAPN (28)
mnp

be the generating function for SU(2) IR’s contained in
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O(5) IR’s; G is given explicitly by Eq. (23). We see that
to convert (27) to a generating function F for SU(2)
X8U(2) tensors formed from the components of V it is
necessary only to replace UFUS by 2, AN .,,. The re-
sult is

F(V,A,B)=(1~ VZ)-l Z Vm-»ZnAmeNmnp

mnp
= -ViiG(VB, Vi, A). (29)

For our purpose, forming subgroup scalars, we want
only the part of F which is even in V, That means using
G', Eq. {25) in place of G in Eq. (29). We also replace
A___si/Z’ B"’TI/ZI

F'(V,S,T)= (1= V¥IG"(vTl/2 v2 §1/%), (30)

The exponents of V,S, 7T in the expansion of F’ repre-
sent the degrees of the various scalars in the (3,1) ten-
sor V and in the SU(2) XSU(2) generators S and 7. The
exponents of S and T are all integral. There is no need
to list the elementary scalars here, since they corre-~
spond closely to the elementary multiplets (26). An
O(5) 2 SU(2) elementary multiplet (abc) is interpreted
as a G, 0 SUQ2)XSU(2) scalar {a +2b, 3¢, 3a). The SU(2)
X8U(2) Casimir operators (0,2, 0) and (0,0, 2) and the
G, Casimir operator (2,0, 0) must of course be added
to the list obtained from (26). The elementary multiplet
(030) becomes (600), the sixth degree Casimir operator
of G,.

Branching rules for G, SU(2) XSU(2) have been given
by Stone® and Mandel’tsveig. '
() O(5) 2 8U(2)

The group generators decompose into an SU(2) vector
L and an [ =3 tensor U. Since only integer spins are in-
volved, we use conventional { values to label operators;
subgroup scalars correspond one-to-one to tensors
formed from the components of U. The generating func-
tion for the tensors is found by the methods of this arti-
cle. After some tedious algebra we find the generating
function for scalars to be

G(U, L)
=[(1 = LY(1 = U1 - UH(1 = US)(1 = ULY)(1 - U2LY) ]!
x{{(UALY? + VAL + UALS + USL3 + U'LD
+(UPLA)(UPLY) + (LAY (UPLY) + (UPLA(UPLY))
X (1= U2LA Y +[1 +URLE + UL + UBLY + URLS + ALY
+ UL+ UPL + UL+ UPLY+ UL + UL +U'L?
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+IBL + UL + UL + UL + U'S + (UVNURLP)

+ (UALAWURL) + (UBL)?: + (UBL)? + (USL) + (UPLY
+(UBL)(UBL3 + UL + UL + U*L? + UPL + UPL?
+USLY + USLE + UL + U'L? + UL + U°L?)
+(USLYUAL? + USL +UPL2 4+ UBL)

+(UPLY (UL + USL) + USL(USLY + UAL? + US LA

+ USL) + (ALYUBLAWUPL) + (UVONPLAUALY)]

X (1 - U“’)“}, 14 (31)

There are twenty-eight elementary scalars [the notation
is {(ab) where a and b are the degrees in U/ and L]:

(02), (13), (20), (22), (24), (31), (33), (34), (36);
(11), (72), (75), (81), (92), (10,0), (10,1), (12,1), (15,0).

The Casimir operators of group and subgroup corre-
spond to (20), (40), (02). There are two missing labels,
and hence four functionally independent missing label
operators; this is consistent with the fact that, apart
from Casimir operators, the denominator of each term
of (31) contains four factors.

To avoid redundant scalars the following products of
elementary scalars should be avoided:

(22) with any of (36), (42), (43), (51), (54), (63),, (71),
(72), (81), (92), (10,1), (12,1), (15,0);

(22)? with (31) or (10,0); (10, 0) with (45), (75) or (63);;

(31) with (36), (45), (63),, (75), (10,1), (12,1) or (15,0);

(31)% with (22), (33), (34), (43), (54},
(63),, (71), (72) or (92);

(31)3 with (52) or (81); (31)! with (42) or (51); (31)5;

(51) with (34), (36), (43), (45), (52), (63),, (63),,
(71), (72), (75), (92), (10,1), (12,1) or (15,0); (51)%;

(31)(51) with (42), (54) or (81);

the product of any two or square of any one of {33), (34),
(36), (42), (43), (45), (52), (54), (63),, (63),, (71),
(72), (75), (81), (92), (10,1), (12,1) or (15, 0) with
the exception of (34)(52) which is permitted.

(c) SU(4)D8SU(2)xSU(2)

The generating function for subgroup scalars was de-
rived first by Miller,!! and published with applications
to nuclear physics by Quesne. '? Incidentally, the gen-
erating function can be found more simply, The SU(4)
generators, decomposed according to SU(2) XSU(2), con-
sist of a (1,1) tensor @ and the SU(2) XSU(2) generators
S and T. Regard the nine components of @ as the basis
of the defining representation of SU(9). Then the sca-
lars, apart from S? and 7%, correspond to SU{2) XSU(2)
multiplets in IR’s (A0000000) of SU(9). Now SU(2)
XSU(2) is not maximal but occurs in the chain SU(9)

D 8SU(3)xSU(3) 2 SU(2) XSU(2), so the problem can be
solved in two steps. The generating function for IR’s of
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SU{3) XSU(3) contained in symmetric SU(3) IR’s is
F(QvAls BI’A‘Z’BZ) =[(1 - Q3)(1 = QA1A2)(1 = QZBIBZ)]-I:
(32)

where the coefficient of @*(4,4,)%(B,B,)® is the number
of times the IR (ab, ab) occurs in the IR (A). Since the
branching rules for SU(3) D> O(3)~SU(2) are known [see
Eq. (19)], the rest is straightforward.

We give the generating function in a form which has
positive terms only in the numerator (as first found by
Miller):

G(@,8,T)

=[(1-8)(1 - T2)(1 - Q)1 - @)1 - Q)1 - QsT)]"
x[(1- @11 - @T)] {1 + QST +Q°ST
+ Q2T + QST +QIST? +Q°ST? +Q°T?]
X (1= QT +[Q'S (1 + Q*ST + QST +Q°S*T?)
+QST? + QST + @ ST +Q°S*J(1 - Q*SH) 1], (33)

The elementary scalars and their redundant products
are obvious. The number of denominator factors in
each term is nine, i.e., the number of Casimir opera~
tors, five, plus twice the number of missing labels.

5. CONCLUSIONS AND COMMENTS

This paper gives a method for converting a generating
function for weights with respect to a compact, semi-
simple group into the corresponding generating function
for IR’s.

One application of the method is to SU(2) bases of
O(5) IR’s, in terms of elementary multiplets. The
stretched products of the elementary multiplets, with
certain redundant products discarded, define complete,
independent bases for O(5) IR’s, and thus solve the state
labeling problem. But it should be remarked that they
do not constitute explicit expressions for the states;
they contain admixtures of states belonging to lower
group IR’s which must be projected out, a straightfor-
ward but tedious task. The generating functions (23},
{25), apart from defining states, yield explicit form-
ulas for branching rules, in which only positive terms
appear. Stone’s branching rule,? obtained by a division
process, contains negative as well as positive terms.
We hope to find elementary multiplets for other group—
subgroup combinations of interest in physics.

We have given integrity bases for missing label opera-
tors for G, SU(2)XSU(2) and O(5) 2 SU(2). In each case
there are two missing labels and four available indepen-
dent operators. To define bases, at least one pair of
commuting missing label operators must be found. A
computer program is being written to find such com-
muting pairs. In the similar SU(4) 2> SU(2) XSU(2) case,
two pairs of commuting operators are already known, '?
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APPENDIX

The generating function for O(5) > SU(2) elementary
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multiplets, discussed in Sec. 3, is given by

2 (=) F(U, Uy, m)(1 = An)7Y,

res

(A1)

where )., means sum of residues inside the unit cir-
cle and F(U, Uy, n) is given by Eq. {(22). F(U,,U, ,7)
has poles inside the unit circle at n="U;, 7*=U,, n°
=U,, and n'=U,.
The residue at n=U, is
U1 - U1 - UL - UD)
X(Uy = UH = v )] (A2)

The sum of the residues at the three poles for which n?
=U,; is
2

3 0 U1 +wmU 3 + U/ 3) (/3

+ Upw™ U3 4+ U™ U} + Uyw™Ul/® + U})

X (1 +w"U} %A + WU}/ 3A)

x[(1 - U - v (Ut - (ot - v - A,
where w = exp(27i/3).

(A3)

The sum of the residues of the poles at n=+0U}/? is

Us +UIU3 + U, U3A + U, U3A
(F=-UHA-U)1 - =TIU,)A - T,AY"

(A4)

Finally, the sum of the residues of the poles at 7

=2U}Y, 2iU}/ % is

5> U(= )" U3/ 4 + (= 1)U, UL/ 2 +imURUy * + U}

m=0
X{imU3/t + (= 1)U, U3/ 2 + (- mURUR/ 4 + U3}
XL+ UL A + (= D)UY 2A% + (= 0)"U A%
{1 + (= 1)"v3’Y
X[(Uy= UNU3 = UNQ = U)(A = U1 - U,AY]L. (A5)

The generating function for O(5) > SU(2) muiltiplets is
the sum of (A2), (A3), (A4), and (A5). The sum must
now be reduced to a relatively simple form.

Before proceeding with this simplification, we recall
that the generating function for G,> SU(2)XSU(2) label-
ing operators is
FYV,8,T)=3[F(V,s,T) +F(-V,S,T)], (A6)
where

FV,8,T)=[(1=8)A-T)]" 2 (g =gt =¢)

res

X[(1=VpPe) (1 = Vae)1 = Vit £) (1 = Vi3g)
X (L= VP Et) (L= Vo)1 = Vte)(1 - v3e™d)
x(1-SY)(1 -1/ 2¢)] 1. (A7)

The summand in (A7) has poles inside the §-unit circle
at £=Vn?, Vn, Vo, and V7~®, Summing the residues
of these poles we find, after some simplification,

F'(V,S,T)=(1-=vY)lc/(vT!/?, v2 51/2), (A8)
thus verifying relationship (30) derived in the text.

The first step in the simplification of the sum (A2)
+ (A3) + (Ad) + (A5) is to determine the common denomi-
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nator. To do this we set up a computer program to cal-
culate the sum for arbitrary real positive values of Uy,
U,, and A. We then search for poles of the form

(1 = UFUBAY)! by giving U, U,, and A random values
with the constraint

UTUAT =1 ¢, (A9)

where € is small. If the quantity (1 - UFUFAY)G(Uy, Uy, A)
remains large in spite of constraint (A9) we conclude
that (1 - UFUSA") is a factor in the common denominator.
In this way the denominator factors

(1—U1)) (1—U2)7 (I-U%UZ); (1—'U1A);

(1-U,4%), (1-U,AY, (1=U,A?) (A10)

are determined, A denominator factor (1 - @) may
correspond to a factor (1 — ®") in the final result.

The final expression for G(U,, U,,A) is to be a sum
of terms, each with a polynomial numerator in Uy, U,;,A
with positive coefficients, and a denominator containing
factors from the set (A10) in the sense explained above.
The maximum number of denominator factors is five
[two O(5) labels, one SU(2) label, and two “missing”
labels]; that is also evident from the sum (A2) -+ ++
+({A5). We assume each term in the final result con-
tains exactly five denominator factors.

There are seven factors in the set (A10), hence
twenty-one possible terms in G. The relation of G to
the generating function for G, = SU(2) XSU(2) scalars
implies that (1 —~ U3)"! may be assumed to be a common
factor; it corresponds to the sixih degree G, Casimir
operator. This reduces the number of possible terms
to fifteen.

A further reduction is obtained by determining which
pairs of denominator factors can occur in the same
term; this is possible because there are three vari-
ables, so two constraints of the form (A9) can be im-
posed. It turns out that the pairs (1= U,A%) (1~ UA)
and (1 = U3U,)(1 = U;A%) cannot occur. Hence G(Uy, Uy, A)
has an overall factor [(1 = UH(1 - U)(1 = U,AY)]™! and
four possible terms with denominators (1- UzA?)
X(1=U,), (1=U,4)(1-U,4A%, 1-UA)1-U3,), and
(1-U,A)(1 = U,A4%; recall that (1 - Q)! may appear as
(1 =@ in the final expression.

Next we consider specific limits of G, for example
U;A— 1. Then the term (A2) dominates the sum (A2)
4+« +(AB). Since an overall factor (1 -U3})™" is ex~
pected we write (A2) as
Uil - U3)
=031~ UDA=0D){1 =~ U0, = UNA = T,A)

(Al11)

No factor (U, = U})™! can occur in the final result. But
in the limit ;A — 1 we have

(Uy= U ==Ui(1 = UUiY) == U{(1 - U,A"Y), (A12)

an acceptable denominator factor. Then, in the limit,
(Al11) becomes
-1 =-UDA-UDA - U,4%{(1 - UA)

X (1=UH1 -vhH(1 - viuy)]™
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== U1 =UHQ + U} +UH(1 + U, + UIU3)

X[(1= U = U,AN)1 = U,A)0 - U1 - U = USUD]!

= UL+ U+ UD(L + U0, + U1 = U3N(L = UpAY)
X(1=-10,A)1=-UHTHA - Uiud) - 1 - UH™}

=U7 A+ U3+ Ul - U3 - U,AY) (1 - U})
X (1= U A1~ VU - U (L + U3, + UiUD)
x[(1=UDA - U,4) (1~ UDA=-U,A) 1 - U] (A13)

The first term has a reasonable denominator and the
correct sign. The factor Uj* can be removed by multi-
plying by 1=(4,U,)!. The second term has the wrong
sign and a double pole at U/; =1, Both problems are
cleared up with the substitution

1=-U) =1 -0}0,A)%] == U743 (1 - U,4%).  (A14)

Proceeding as above, the following limits of
G(Uy,U,,A) are found. The common denominator factor
D=(1-UHU-UAN1 -U}) is removed:

lim DG(U,, U,,A)
U1A-1
=UASL+ U + U1 - U,8)(1 = VU,
+U3AY(1 + AU, + UIUY)

X[(1=~134)(1 = UAN], (A15)
Lim DG{U,,U, ,A)
Ui'UZ-i
= (1+ U, U,A)[(1 = U2, )1 = U,A2)]
+ U A(1+U,UA +U,A?)
x[(1 - ViU, (1 - U,A)], (Al6)
lim DG(U,,U,,A)
U 4’
=1 +UAT+ UIU3AY[(1 - U, A% (1 = U,4Y ]
+ U1 + U,A% + U3AY)
x[(1-U0A%1 - U AN, (A17T)
lim DG(U,,U,,A)
U4t
= (1 + U U,A + UiU)[(1 = U,AY) (1 = U,AY)]
+UVA (L + U U,A)[(1 - U,AD) (1= U3U,) . (A18)
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Each pair of terms (A15)—(A18) has the form
Nab + NG.L
(1-9,)1-9,) (1-)X1-Q)°

There are two ways to manipulate these pairs. Any
term in N or N, . can be multiplied by Q7. Or N,, and
N,. can be altered simultaneously according to

N Ngp+N'(1~Q,), Nyp—N,,—N(1-Q,).

(A19)

(A20)

The goal of these manipulations is to make each pair of
terms with a common denominator consistent, i.e., we
want to obtain

Ngp=Nyq. (A21)

The result thus obtained can differ {from DG(U, U,,A)
by at most a polynomial in Uy, Uy,A. This polynomial is
easily determined by computing the difference between
the guessed form of DG(U,,U,,A) and the true form for
selected values of Uy, U,, A,
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A finite difference equation defines the exponential of a square tableau, extension of the usual Gel'fand
pattern. These exponentials or “K powers™ are homogeneous polynomials useful in the theory of group
representations. The theory of these polynomials is developed, and some important addition and
multiplication theorems are deduced. The application to the group U(n) gives explicitly the Gel'fand states
for n =4, and it is conjectured that the given relation is true in general for any dimension. The matrix
elements with respect to this basis are calculated for n = 3 and the Clebsch-Gordan decomposition of the

n product of U(2) is also given.

1. INTRODUCTION AND NOTATION

The theory of linear representations of the unitary
group U(x) is still of constant interest in many physical
calculations, The knowledge of the explicit Gel’fand
states or the matrix elements of irreducible representa-
tions of U(n) is of considerable importance to the
atomic, nuclear, or elementary particle physicist. Al-
though a large amount of literature about Gel’fand states
exists, =% explicit expression for these states or for
matrix elements of irreducible representations of
unitary group are still unknown for arbitrary n.

The first fundamental contribution was given by
Gel’fand and Zeitlin® and followed by Gel’fand and
Graev.® They gave explicitly the matrix elements of the
generators of U(n), Alternative approaches where
proposed, later on, by Moshinsky7 and by Baird and
Biedenharn® using the so-called “boson calculus, ”

The important contribution of Louck®!! must also be
mentioned, Louck gives the relationships between the
initial Gel’fand, Zeitlin, and Graev approach and the
boson calculus approach. Louck and Biedenharn, i using
results on totally tensor operators, gave a procedure in
order to obtain recurrently all boson polynomials,

On the other hand, connections between group
representations and special functions are well known
since the work of Cartan, * Vilenkin'?, Miller, ! and
these two fields are progressing together as it can be
nicely seen in the Talman'® book based on Wigner lec-
tures. The theory of group representations gives new
addition theorems on special functions but group theory
needs appropriate special functions in order to realize
their linear homomorphism,

In the simplest case, appropriate operators acting on
the hypergeometric function generate the SU(3) states;
but for SU(4), SU(5), or SL(x+3, T) more elaborate
functions appear: Appell functions, hypergeometric

functions ,F,, and Lauricella functions. t6-18

The last important improvement in the theory was
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given by Henrich!? introducing in an elegant formulation
the Bargmann—Moshinsky spaces.” These spaces, sub-
spaces of a Fock space over a space of matrices,

characterize very nicely any particular representation,

All these approaches suffer from the same difficulty:
The functions on which the group element or the opera-
tor acts cannot be handled easily because they carry a
large number of indices labeling the corresponding
representations, It is therefore essential, in order to
master the indices, to define very concise notation and
to develop in itself the algebra of these symbols.

This self-contained work is an attempt in this direc-
tion, 22! Homogeneous polynomials with a large number
of variables, called Gel’fand lattice polynomials, * are
associated with a double Gel’fand tableau,

The basic definition, mastering the indices, general-
izes in a symmetrized and natural way the definition of
the classical exponential x7, where ¥ is now a set of
(zn") initial conditions and 7 is an n by n Gel’fand lattice.

The algebra of these polynomials are developed in
detail and some important addition and multiplication
theorems are proved. The lattice structure of the
Gel’fand tableau and the decomposition of the Gel’fand
lattice in elementary components (binary tableau) play
a fundamental role in the results obtained. The theory
of group representations is connected with the Gel’fand
lattice polynomials by replacing the (2,,") variables by the
(*™ subdeterminants of a matrix of GL(z,K).

Applications of the multiplication theorems to the
group GL (i, K) give explicitly the Gel’fand states for
n=4 and it is conjectured that the relation is true in
general for any dimension, The matrix elements with
respect to this basis are calculated for n=3 and the
Clebsch—Gordan decomposition of # products of U(2) is
also given,

Notation: The following classical symbols are used in
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this work:

AN n! .
(s>~ (n-s)tst”’

n _nt (y'\g _,,>.
. =7 2y 8;=n);
(-"1,32”-»,3: Miasit i

_ T(a+0o)

H
a), = @) (Pochammer’s symbol),

where 0 € Z and I'(x) is the gamma function;
x={elyii 1< <),

where x}1::]1 is the subdeterminant obtained from the
n by n complex matrix x = (x;;) by selection of the rows
ig<-°i; and the columns j;«-<j;,

2. GEL’FAND LATTICES
A. Definitions and operations

a. Gel'fand lattice

Let us consider the following tableau, called in the
following a “Gel’fand lattice” (GL) as shown in Fig, 1.
The nonnegative n? integers mj, 1<i, j <n, satisfy the

betweenness relations for all 7,7,
mitsmi <mi_,, ()]

This lattice is a “diamond extension” of a usual re-
arranged Gel’fand tableau. The first row in a Gel’fand
triangular tableau is identical with the central column
of a GL.

A classical double Gel’fand tableau is indexed in the

following way: !
11
’ ’
My M2
!’ Y4
M3 Mgy miy
m{" .« PR .. ;n:m
1 e . .o
My, ¢t . .oy,
myg Mys Migg
77'112 m22

Wy
Relations between the two sets of indices are

— g ' i-j
My =My, and my=mi, 2)
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The betweenness relations are now
Mo oy S5 S My
and (3)
Mg oy S Mg S Mgy
Column notation:
The 2n -1 columns are denoted:
(m),.; ={m",;1<k<n-j}¥j=0<n(left columns),
()™ ={mi*;1 <k sn-j}Vj=0<n(right columns).
The central column is thus
(= [m]"={m{; 1 <i<n} )
With this shortened notation, a GL is sometimes noted
T=M/[m], - [m], - [m]""M,,

where 2 and  are arbitrary integers strictly less than
n and
Mo={mbik+2<j<n1<i<n-k-1,i<j},

M,={mk+2<i<nl<jsn-k-1,j<i}, )
Dot notation:

In particular cases, M, and (or) M, in the shortened
notation (5) are replaced by a dot and the GL is written,
for example,

T=«[m]pilm],-. (6)

Here a left (right) dot means that each element of the
indicated columns is repeated along each left (right)
quasidiagonal,

Explicitly the Mg replacing the dot is in this case:

i i , .
A/Q:{m“k:m:.ml sisml<ksn-if,

(M)

My={mi*=mi1<isn,0<k<n-i},

The following operations, stable with respect to the
betweenness relations, are defined between two GL’s
with the same dimensions (mic T, m} e T'):

1. addition 7@ T*={mi +m}’},

2. scalar multiplication v7 ={vm{} (v a nonnegative
integer).

If mj - m} > 0 satisfy the betweenness relations, a
difference can also be defined,

T T ={mi-m}{’}
b. Binary Gel’fand lattice

The following (") Gel’fand lattices, called binary
Gel’fand lattices (BGL), are essential in this theory:

T=0={mi=0, Vi,j=1,...,n}
T:IE{mle, Vz’,j:l,“,,n}

’

oy =11 DT

T:Ii-}a..’,-;E{ oishisi-1ti, .,
m;=0 otherwise,

A geometrical skeleton of a BGL is shown in Fig, 2.
Any GL can now be decomposed in a sum of BGL’s,

T=® & djj, (8)
p=ta, g P
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where the (2") ~1 unknowns al,r are nonnegative integer
solutions of a system of »? dlophantme linear equations
(we eliminate the T=0 lattice), and the summation in-
dices are:

1,:{1'1 <Z'2 e
={j; <jp<--
The decomposition of any GL in terms of these binary
lattices will be called a binary expansion, For n>1 the
decomposition is, of course, not unique, but the restric-
tions on the solutions (nonnegative integers) give for any
T a finite number of binary expansions. Let us thus call

S={d{ll} the set of all solutions of the binary expansion,
m} belongs to each BGL and it is therefore obvious that

°»<{y;1 iy and i; <n},

c<jy;1<j; and jy < n}. ®

717,~E > d"'! for each binary decomposition, (10)
1al J P ll
We can therefore conclude that the number of binary
expansions of any GL is not larger than the number of
partitions of the integer m]},

c. Gel'fand lattice with unique binary expansion (GLUB)

The nonunique binary decomposition is the general
rule but in some important cases most of the BGL’s
cannot appear (from symmetry considerations, for
instance) and the decomposition is unique. These GL’s
are called GLUB’s (Gel’fand lattice with unique binary
expansion),

Let us give some important GLUB’s
1. The so-called maximal GL (T =-[m],-)
Their binary expansion is

n
.,[m],,o:léai (mb— mihygmidin (mml=0),

neisloven p (=

an
2. The so-called left (right) semimaximal GL
(T=- [7'”]"-1[”7’]"“ or T=. [Wl]"['ﬂl]"-t *)

n
“[mlpalmlye= @ Onf~mi )T e

1, n=i+2e
il

[
© (miy =L (] =00,
32

nei+lyees, p

(12)

iy i d / | N \

FIG. 2, Binary Gel’fand lattice.
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F1G. 3. Peel GLUB.

The binary expansion of the right semimaximal GL is
obtained by interchanging the upper and lower indices.

3. The GLUB of Fig, 3, used in the peeling process,
has the following decomposition {see C):

n=-1

TZfBO (05— oI > i oy (0,=0),  (13)

d. Weights of a GL

To each Gel’fand lattice T corresponds a system of
weights w(7), defined by the components:

w’ =5~ s (right weight),
. 14)
w;=8;-8;,1 (left weight),
where
n=j+l . =i+l
st= 20 mi™l, si= Y Mgy, Spp=s"™1=0.
k=1 kel

w’ (and w,) is therefore the difference between the sums
of the two adjacent right columns [#]*/* and [m ]
(left columns [m),;,; and [m], ;).

In general a given system of weights, with the obvious
constraint,

Zﬂ)w’=iw;(

j=1 i1

281231)’

does not uniquely define a GL.

However, a BGL is uniquely defined by its weights
which can take only the value 0 or 1, The building rule
for a BGL is the following: w,=1iff ic I, and w' =1
iff j e ;.

A GLUB is uniquely defined by its weights only if we
make precise the “skeleton” components of the GLUB as
we can see from the relation

= d{;w(l{ i1 with T a GLUB,
14

A maximal or semimaximal GL can, for instance, be
characterized by their weights,

(15)

e. T induction principle

In order to avoid cumbersome notations with multi-
indices in each inductive proof, we will always refer
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to the following scheme called 7T inductive reasoning:
Let P(T) be a T dependent property, T being a GL,

If P(0) is true and if P(7’) true implies P (T'EBI{,') true
for all ()~ 1 new GL’s, T"®1;r, then P(T) is true for
all 7,

B. Exponential of a Gel’fand lattice

a. Finite difference equation

Let K be a zero characteristic commutative field with
0 as null element and 1 as unit element, A 1—1 cor-
respondence can be defined between the set of all BGL’s
and a subset x of K,

x={1,x71 V¥ Jy, I;,1 <l <n},
J
1[{,' —*x{'lsxn!:, 1<l<n, (16)

Of course, 1 must be associated to the null lattice 0.
This application can be extended to the set of all GL,

T+~ (T) €K,
via the following finite difference equation
()= L (TeT)(T), a7
mj’;’er
G4, HEU, D

and the set x as set of initial conditions, For that rea-
son, the element (7) of K is also noted x” and is called
the “K-power of the set x” or Gel’fand lattice
polynomial,

b. Explicit evaluation of xT

Theovem: For a given set x of initial conditions, the
finite difference equation (17) has an unique solution
given by

m'Z}
s

where S is the set of solutions of Eq, (8).

J
n Gn)yH
1=l Iyl d{'! ’
= 1

(18)

Let us first make some remarks about the solution
xT pefore proving this theorem,

(i) The following equality is obvious,
J J
(ef ) =T, (19)
(ii) From the binary expansion of the lattice 7, it is

clear that

n__ giZesen
my "d12°"n°

Thus
T (m} 12 n
X = (X{5e0im)™n
m:>( 12 n)

(iii) To each BGL corresponds a monomial of only one
variable, To each GLUB corresponds a monomial with
¥ variables if the decomposition of the GLUB in BGL
has 7 terms. To each GL corresponds a homogeneous
polynomial of degree m1 with at most (2")— 1 variables
and with at most (27) - #2 - 1 independent summation
indices.

7‘3»1,'{11° (20)

It is worthwhile to note that this number is rapidly
increasing with =,

(2:)—73- 1 is1,10,53 forn=2,3,4,
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(iv) The following relations are obvious [or well
known see (f)]:

(a.)x’:l'
(b) 07 =0, where 0={1,%71=0, V J,,[;,1<I<n},
T+ 0;

() Ox)T=A"ixT reK;
d) xTxT=xTxT+x™7T (in general),

1
wr_ il it Nogn (i), r
6 = ol T I, @] &)

ve N, T GLUB, x*={l, &7)"; ¥ J;, [, 1 <l <n};

(e) xT=x?

where T is the transposed GL (m]e Temie 'T) and
‘x is the set of transposed initial conditions,

t o0 w0
(o) =2ty @y

(f) The number N of xT polynomials for a given cen-
tral column [m], is given by the Weyl formula

_ Meylml—mi+j-1i)
1= =
o M1 (e - 8)?
Then the number of BGL [(7)] can be computed by the
Weyl formula. Explicitly, }
i
. (23)

2n de with [1],=
n 1a0

NY2=g, . (22)

DeveOFtescid

Let us now give a detailed constructive proof of the
unique Gel’fand lattice polynomial associated with 7,
The theorem can be proved via 7 induction by sup-
posing that (18) is true for all 7’ with m{! <mi, By
definition, x T must in particular verify
TN xTeniloj"{;xﬂﬁZn:{: (24)
1 Jpreoerdy
{41 0009 i,
where the summations run over all possible choices of
the indices 7, 4,,7, for which 79 ][4:::;‘1 is defined, By
the induction hypothesis it is clear that

Jr ek J
(er) if N (erf)e 174
ardi
!l .

zeﬂlzx,z—(mi—l 'Y nf m
Y

S’ ksl Jk¢ Jy
'
Tpt1,

where S’ is the set of all d’7* solutions of the binary
expansion,

TOIf}= & @ d',"/'eI,.k@d”’][,l., (26)

ksl T2J,
e,

Let us introduce new summation indices
dyg=d'th if Jy#J, or [[+1,,
i :d’{ll +1 otherwise. @27

Thus, with (27), (28) becomes

=7 1l (x,ﬁ)"l‘k times

sl T
P R
r o
®
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1
my=1

. + oo
1 1 s00 3 12600
[((dl -1),dy,... ,d?{m{:, ces ,d12-a-:)
mi-1
+ 1 + e
1 H 12 .
(‘lh coe :d ’ (d:'i "k - 1) . 12 »-Z)

m1 - 1

+ . X ie
1 Jooej, a2
((ln»w7d1~,-»=,d£'}n..’,-g,.. , (@i 1))]

The proof is thus complete noting that the expression
between brackets (28) is equal to

m{
{ jfeeeih
(‘db'e d1 :,“’-sd )

and that the coefficients of the binary expansion of T
are exactly the integers d’ J,P

(28)

(29)

C. “Peeling procedure’”

In general it is tedious to derive from the binary
expansion of a GL a set of independent summation in-
dices, Fortunately the expression of x 7 can be derived
from the exponential of the most elementary GL by a
rather simple technique, called the peeling procedure,

a. The peeling procedure

This procedure consists of reducing the resolution of
the finite difference equation (17) to that of a finite dif-
ference equation with a less large number of summation
indices. This is justified by the following result.

Peeling lemma: Let s ={ml=m = myz <2 m,;
¥ < 21 - 1} be a totally ordered sequence (or chain) of
elements in 7, including ml,

If x7s is the solution of the finite difference equation

xTs= 2 xT@TSX 5, (30)
milds’
with x as set of initial conditions, and s’ the corre-
sponding chain in 77, then
e Ny () @)
m; ., m,

is the solution of (17) with x as the set of initial condi-
tions.
Proof; Let us calculate
> LT, T
m’%
G4, H#, 1)

where x 7 is given by (31). Then
T xTOT,T
m' i

i
4, 1, D

ral ’ !
m, — m m
= > 1 R T B\ TOTY 4 T
l] kul Mps1 — Mpa Hlpay

i
4,1, 1)

— z: xTs GT's,xT'S,
Ij CS'
(i.J)#(i 1

r=l — ! ’
>[l’l ( m, - mf, )(mk )]
! ’
kel \ st = Myt / \Mg

r=i
m,
=1 i \¢Ts
ixl Vg
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from (31) and by applying the multinomial theorem,

Of course the solution of (30) is easier to find than
that of (17), if the chain s and the arbitrary elements

m'} are judiciously chosen, This choice will be made in
order to obtain the exponential of a GL where all ele-
ments are m} or 0 except for some elements of M,
belonging to only one oblique (right if 7 is fixed, left if
j is fixed): Such a GL is called a “peel,” (The same can
be made with M, by use of the transposition property.)
The lemma can again be applied to the remaining ex-
ponential and so on, until all exponentials are exponen-
tials of peels. In order to clarify the procedure an ex-
ample is given in the Appendix,

b. Exponential of a peel

We remark that two kinds of peels appear by applica-
tion of this technique, Let us denote

I= ([A/[<k, ml] )1 (R <iy),

the peel with # elements different from m} and 0 in the
Ith left oblique of M,; and

7= ([M,; mi)90)71,

32)

(33)

the peel with %z elements of the »th right oblique of M,
different from m} and 0. The total number of nonzero
elements of this oblique is equal to j,.

In other words, their binary expansions are

kR
I= ([My,; mﬂt)r],’ 23@0 ("25101-—5-1 - mépz-s)n{,'(s),
where
m;“, =0,
’ntzi-tl-k-i:mi; (34)

L(s)={iy— s <iy <o+« <iy},
and
oy 7
= (g

= @ (mio=® -
8=0

Jo=s+ly Y
"y ) 11{6(3)’

where
ig+l
77’!:.0* :0,
miok =mji,
Bo(s)={ig <iy <ooe <ij=1<ija-1<eoo<iy -1
(35)

<:i},04_s oo e L 11}°

Two examples of peels are the following:

17 4(1,2,3)
(M, mily) (54 51

etc,
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and

115 3y 11,2, 3,4)
(Mg, miP )i g6
mi
1 1
"y . "y
ity g m}
m§ . m} . m} . m}
my my mi my 0,
= mi ms m} m} 0 NN
- 3 1 ~
P /0 msg niy 0 o
~ ~
D I R RN
_ N
e PR ,/0\ \\
- ~ - ~

~
1t is thus obvious that peels are GLUB and that their
exponentials are given by

E /m
((Mep; nzﬂl)‘{ll: K (

1

f1+lmg- m -se m¥ -

i )“<mzwsiiws
s20

iy+l-s

36)

k 12798
11,0 70=8_mig=s+1
( Mey; "11]r'j0) zl— fi (rnf:)‘-sd)(«x% )m"o -y~ . @7
v

s=0 I;O(s)

D. Particular GL and particular initial conditions
a, Exponential of some particular GL

Let us give explicit solutions of the finite difference
equation for some important GL,
1. Maximal GL:

r n ( n-i»i.n-id---n m’ -mit{
il =il

nai+ly, n=i+dee (38
i1 (m; - M‘ii)' ’ )
n+l __
where w1 =0,

2. Semimaximal GL (left ov right):
x'[”‘]n-l [m3,*
n (x?-z+1,n-i+2' °n) m’ 'mul (xn-i+1. neisleo

:m%l I ”“i*z - "-Mﬂ-hz
i=1 (mi- mm) !

i i+l
jy i S5 e 28

1 N
mé:j)‘

39)

(m?
i+1
where m”,, =mhi=0,

3. Ith symmelrical GL:

This GL (see Fig. 4) will be denoted
M [m], M, = [M;mi; M,],.

(40)

-

FIG. 4. Ith symmetrical Gel’fand lattice,
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= M<[m]no

FIG. 5. Partitioned Gel’fand lattice.

It has at most (2n - 1) nonnull elements,

These GL satisfy the following finite difference
equations for x” [notations (T)}:
(M mi; M1
Y‘ (M,

Y
x (ML m'}; ML),

My mb - m'd M, © MIY,)

(1)

Any GL can be expanded in symmetrical GL, via the
peeling procedure in the following way,

i n=1
(i . (i
=(71) - (e ) Tems),
where (T[’“ln)’ the solution of the finite difference
equation

(Ttm]")=

42)

? (Ttm1, © Ttm1 J(Ttmty ) (43)
ma{ tm'l,, n n n

is given by

n
Tiny)= 2y 11 (M S MDY,
( [m]n) MZ;) 1o ([ < < ):
u»
2=1< nd
1+ ( {1+
mh ~myd; MDY © M)

with

Mt ’_M§, w‘">

met,

mi=0}, m¥li=0,

nel —

{mh Tnj

Ms(mi) ={mi; {44)
Indeed, the indices of the central column of T,y
now being free indices, can be choosen such that
m'i=m't =mi. Because of the betweenness relations,
the elements (m} - n’!) must vanish for i > 3; the inter-
mediate GL is then first symmetrical, The procedure
can be contmued with the remaining GL now fixing m’}
m’t =m'3=m3; this gives a second symmetrical GL,
and SO on,

4, Left (right) GL:
These GL’s are of the following type:
T=MJ[m],> or T=-[m],M,.

A left GL satisfies the recurrence relation

M mlpe Vl’l m% ( i%:;:n)mﬂ
m my = n

x@or%sm@%%m 45)

where T, is the GL of dimension # — 1 obtained from
the left GL by elimination of the first right and the last
left obliques, as shown in Fig. 5, and £ is a set of ini-
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tial conditions deduced from the set x by the relations

xi j ep s
. . t?+l ng ’l"i 1f]1:1,
Gliit= (46)
i1 jgeecign sz
R T > L

A similar expression for a right GL is obtained by
application of the transposition property.

b. Particular inftial conditions

Explicit solutions can also be examined for an
arbitrary GL but for particular initial conditions, We
consider the following two important cases.

Diagonal initial condilions: Let us call a the set of 2"
nonzero initial conditions obtained in the following way:

a:{l,xﬁ}: :6{}00:6’1(1 : 1§an} (47)

tl 11 "11’

11
il
2N /)01
' i711 "‘71 — n
a” =0y u, it Nl — v )@ geen,)™
A\ m, §=m?
1.1
X (@)™ ™20 TratOmptl g

where

rl 6 ]

6 =
M M m o
B cician BT

T,.( is the truncated GL as before and « is the equiva-
lent of the ¢ [Eq. (46)].

Explicitly,

Nty Gi=hi=n=1+1, 00 5=n=1),
adrtin =

iy iy

e 5yl ven ige (Jy#1,d1=n-1)

(48)

Subdeterminant initial conditions: The set X of all
subdeterminants x{1:.2% of a matrix x = ]y of M(n, K)
[in number (2,,") - 1]'and the element 1 is now chosen as
initial conditions,

In this case, some very important properties of the
exponentials x” must be given,

(i) Let us first consider the canonical injection of
GL(n-1,K) in GL(», K),

Xy oo X2
x"_iz . '—'xn: (49)
2 n
Xooe Xy
Then
ng[m)n_l [m ]n[m]"'1M>
my\ frt 72 ni 1o
1 t+1 Melml, ( M;
=Omy,_ytmim{ 1 Ti X,y o=t
ma [\ my i m - M,y
where
n
6[m],,_1 m1t :;1:]2 6m:-"'1,mi-_1' (50)

(ii) For any diagonal matrix a= (af) with @ = 6ja;, the

exponential a’is simply given by

n H/l.
T ws
a =5y, M\[n( +(>(l ']( I 7)
M [y i, (<icjen )’

where w;=5;— §;,; are the weight’s components of the
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left G lattice M [m],

mi m""1
ial™ nrl o onel
Yii = ( mi— m{*l mpg=myt =0, (51)

This is obvious from (47) noticing that here

H

(iii) Finally, the first multiplication theorem can be
formulated. For any matrix x = (x) of M (n, Q) and
diagonal matrices a = (5/a;) and a’ = (8ja}), the following
relation is true:

n n
(axa’)T:( I a)( I a;“f)xT, (52)
i=1 jal

where w; and w’ are the weight’s components of 7.

E. General properties of x”

a. Generating function

Let us introduce a set of n° elements of K indexed in
the following way:

)\}?u{’ ISZ',].S;’[,
Ny, 1<d,j<n-1,
scoce (53)
)\lgyp'iv lgi’ jg7l_k+11
i
X?’“‘m

with the additional constraints Aj=pu}, 1<l<n

Then, for a given m} the following multinomial ex-
pansion generates all x 7

n
(7‘ Txi,x
=1 J,
n

n nal+l ! !
= M T ()™t 1e
2

md 1=1 =1
1

t
i, i...k Xz’#ﬁ#%‘ “1e -o;,a

(£, ), D)

(n I (u{)m%""-mf*’)}. (54)

121 jel

The proof of this formula is inductive on m} and is im-
mediate by using the finite difference equation,

The following corollary appears obviously by taking
all A{ and pf equal to 1,

m
> Daiy = 0 «n (55)
121 Jrl mg
' (i, H#(, 1)

The introduction of the generating function allows us to
display some very general properties of x7,

(i) Let xT be the K-power of x defined by (54). Then
x T must satisfy the finite difference equation (17) with
x as set of initial conditions,

The proof of the conyerse of thfaorem (54) is easy by
using the fact that (P)"1= (P)’”}"" 1{(P)™ 1,

(ii) The comparison of the two formulas (54} and (55),
gives rise to a homogeneity formula,

Let Ax M be the set of initial conditions deduced from
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x by the transformations

x;’}:::z;*x},-o x,ix:}: dtufre. e, (56)
Then

n n-l+1 ! 7
AxMT={ 1T T QD) Maiat ™

121 4=t

pf 2 ommivd [ej=1_ I+j
xx'\ 1 ﬂj(u{)’"' ey, (57)
121 4=

(iii) By expanding the first member of (55) in a series
with multinomial coefficients, it is clear that for a
given m} the set of x” forms a partition of the set of the
monomials

144 }

1 jc.nj
(di," df..,,..

1

" PRV
eeon ) [T 11 (x,’l) Iy, (58)

s )i I
All these monomials are linearl)lr independent (for a

set x of functionally independent initial conditions).

Consequently: For a given m} and for a set of functional-

ly independent initial conditions, the polynomials xT

are linearly independent on K.

Let us remark that the expansion (55) is a particular
case among the various possibilities to summing on a
subset of elements of T,

Later, we shall need for example, the following re-
sult: Let a be the set of diagonal initial conditions with

— Jpdqeecdy
aiia..il— E Mﬂ“'u x inoe,l
jl<o-.<]l
Then
tm) H RSN irat 13-l 1
attmly M= S5 i tmL ot T (™ ) (59)
i, =1 =1

b. An addition theorem
Let x and y be two sets of initial conditions, and let
us define their sum by

x+y={Lxp +y{; VI, 0, 1<l <nl, (60)

Then the following proposition is easily proved by T
induction,

(x+y)T:ET (”71) 761'3}1"

2
)'lj

(61)

c. Multiplication theorems

Although multiplications theorems were rigorously
established for a wide class of particular cases, no ex-
pression is known in the general case, We are only
allowed to make the following conjecture:

E XM Im" 1 M5
[m*1,04%

Im'1, 047

xyH<Iml iy — —(_T—'l—ﬁ yHn"hdls  (62)

where v(T’, T") is a constant and where
gt il — ;
—wi’/—-sl _sl/ (SI+ é’gi)—o 1<Z$n.

But this restriction is not sufficient, as it can be seen
in the =3 case. In that case, it is proved (cf.
Appendix) that

(xy)u<[m]3u>
m{ -0 1 . m} -7
e
= xHe mz ”>;—~——-— el omd |,
’ - 4
tm’ j €M) mi+o tmlg M0y 1) w3+ 7
o7
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where
1 [_% m3) 1 Pmd = md + 1) (m} - md)!
(d)od =)
mi — m3 J\mg - m}
WIS

ofT!

Vimlg o0y

1

[(m} - m} - 0)! (m3 ~ m} ~ 0)!

X (m} - m?= 1)1 (m§— md- 1))/

1
1
t- 271

{(m
x 25 pt/[(m} - mi-

mi+p+ 1) (p-0)(p~7)1]. (63)

Finally two results for particular cases can be stated
for some integers n. The first was obtained before for
the exponential of (axa’) [Eq., (52)].

mi - 20)! mi — mi-

X(m%—

The second particular result is true when
— Il 102 — 433
[ml,={ml,mé=mi=-..=m7}

and it is

[m] My M
xy "< 2
( ) {m'fEu *

i <

i ] 7\l
NIE B A ) L timd iy
mli#i_ mh y
i=1 1 n

1_
m'pt=my,

<Lmlgir,

(64)

3. GROUP REPRESENTATION AND GEL'FAND
LATTICE POLYNOMIALS

A. Fock space and Bargmann-Moshinsky representation
space

a. Fock space over a space of matrices. Representation
space

This section links the Gel’fand lattice polynomials and
the representation theory of linear group in a con-
venient space. These spaces are nicely defined in
Henrich and in order to be self consistent we summar-
ize Henrich’s essential developments,

Let us consider the vector space M{n, Q) with the
product

(x,y)=Tr(y*x). (65)

Let y be the Gaussian measure on Mz, @) defined by
dyx)=Cexp [—- (x,x)] IT dR‘x dlxl; x = cd).
iydnl
Let F, be the space of analytic functions on M(n, C) such

that [ | f1%dy <, F,is a Hilbert space, called a Fock
space, if we define the following inner product,

(f,8) = [ fle)g*(x)dy(x). (66)

The Fock space is invariant under transformations of
the base space which preserve the inner product,

e.g., multiplication on the left by a member of U(n), A
unitary representation of U(x) L, can therefore be de-
fined by the following action,

(L)) =1(£%)
with £ € Un).
Bargmann and Moshinsky have indicated a way to

(67)
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build subrepresentations of L which cover all irre-
ducible representations of SU(r), but the elegant reduc-
tion given by Henrich using holomorphic induction is
more global:

Let N be the subgroup of GL(»n, @) of upper triangular
matrices with 1 in the main diagonal,

N={xc GL(n, ), xi:l, x{=0, 125 <i=<n},

Let A be the diagonal subgroup of GL(z, ),

A={a=(ay-.-a), a;#0, 1=i<n

Definition: F[m] is the space of holomorphic functions
on ¥ (n, T) which are transformed in the following way
under the right action of the group AN of triangular
matrices:

" nei+l
f(’(/(() = I (I?n-idf(x)
i=1
with
{eN, acA, xcMp,qC),

(68)

mic ],

By, called the Bargmann—Moshinsky representation
space, carries a unitary irreducible representation of
SU(n) of dimension d[m] given by Weyl’s formula

[Eq. (22)].

We therefore get a complete list (up to an equivalence)
of unitary representations of SU(n) by taking #=0,
Similarly we get a complete list for U(n) by allowing
m, to belong now to Z instead of IN,

b. Reproducing kernel of B 1.,y
K[m]n(x) y) bY
= (f, I([m]ﬂ, 3)) iffEB[m]n, (69)

Defining K,y y(x) =
Kty , Bomy, /)
we have the following,
Theoreni: The reproducing kernel of By, is
I([m]n(xi V) :k[m]"(y+x)°[mhn »

where y'x’ "1 is the maximal G lattice € power of y'X.
The explicit value is given by Eq. (38), where

mi\” ; ot
Py, = ﬂ el RN HR A
M7 ist

x ﬁ (mi—mi+j-1i), (70)

1=}

¢. Branching operators

The branching operator arises from the embedding
of Un-1) in Un),

.. 1 0 +ec 0
gmi—[€3990§2]»£ﬂ v E% e gf ° (71)
' g e &

¥ the representation L™, of Un) is restricted to

U(z— 1), then according to Weyl’s branching law this
representation can be decomposed into a direct sum of
distinct irreducible representations. Each component is
equivalent to L)1 where

) -1
Inl={mismis ool <o smily,
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is subject to the ordering relations (“betweenness
relations”)

m‘& = nz”1 ny, <7 =n, (72)

This equlvalence is realized by a map from By, o
to By, , called a “pranching operator” and denoted

[m),
R[m] -1’

REQ%:_I intertwines the given representation of U(n - 1)
on these two spaces,

1, (73)

Rfﬂn is then determined up to a multiplicative con~
stant because the multiplicities in the branching law
are all 0 or 1, We shall choose the constant so that
R[ =, is a partial isometry. The reproducing kernel
RE;} (x, v) of the branching operator is given by
Henrlch

L[m]{lez%n . RE::%" L[m]

Theorem: Let [m], and [m],.; satisfy the betweenness
relations. Then there is a branching operator Rl

Im3; .4
2
from B tm1,_( t0 Bny, which is an isometry on B[,,,]n i

The reproducmg kernel of R%’"’,’}n ., is
kfz%n (y+x)0[m],,_1[m],,°. (74)
o[m],.q[m],- is the left semimaximal G lattice.

The explicit value is given in Eq, (39) with

nmi -1
lmd, _ i i+}
kipn I : i ﬂ (nz
[l i=1 b e mn, is1

X H mi+n—-01 1 (méy~mi+j-i-1)l
£=t1 i<i

(tu~i+1)!

) -1/2
X IV (= g +j— 77)']

isj

n
X I1 (= mi,y+ji=17)
i<

) 1/2
X I (i~ mi+j-i) T (i, —mj, ti- i)'] .
i<i [3¢)
(75)

d. Gel’fand basfs vectors

Now, we define an orthonormal basis of each space
B[m] in the following way: The procedure is inductive on
n and assumes that orthonormal bases have been de-
fined for the spaces By,; , such that R{7}» #0. If each
basis elements are mapped into B[m] by the branching
operators R[m] " the resulting vectors form an ortho-
normal basis of By, Each basis element is thus of the

form:

Unly pimla.
I'= R[m]" 1 [m]” 29 o

“REERM, (76)
where [m]; are chains like in Eq. (4), satisfying the
betweenness relations, Here, we could adopt the con-

ventional notation
m],

{
Tl [m)p,x (rn

’

[””11

pbut for reasons which will appear later, we prefer to
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denote the Gel’fand basis element
F(‘M<[m]n ° 9x)-
A well-known property of the Gel’fand vectors T is

contained in the following theorem proved in Henrich., 19

Proposition: The Gel’fand vector I' is an eigenvector
of the action of 4; if w, is like it is in (14), and a
= (ah cee 7an), then
FU”([’”]::' ) ax) =11 alw{F(M<[m]n' ,x)- (78)

i=1

In connection with Sec. 3 A, we can state the property:

Left G lattice polynomials with central column [m],
are elements of By, .

We can see that X"<!"1s" jg g polynomial homogeneous
of degree m} - m}.{ in the arguments x{;%;1.1}". The proof
is directly deduced from Proposition (2. 2) of Henrich, 1°

B. Applications and results

A classical problem of the group’s representation
theory is to find explicitly an orthogonal basis of the
space B, and then to construct the matrix elements
of a linearly irreducible representation of GL(z, €).

The usual method to solving the problem is the
“boson calculus” or the technique of the “irreducible
tensor operators, ”’ but the calculation becomes inextri-
cable for n > 4., Nevertheless, further results can be
obtained owing to the exponential x7,

a. Basis of B ),

Many reasons lead to the following conjecture:

The polynoms xM<mln*

form a basis of B, - (in
general nonorthogonal).

This conjecture is first based on the proven fact that
the polynoms x*<™1n* belong to the space B¢, , and that
their number equals the dimension of that spa'(':e By,
But can it be asserted that all these polynoms are lin-
early independent? The answer is yes if we can prove
the following general result about the linear indepen-
dence of the x7.

Let x be the set of ((2,,") ~ 1) initial conditions of the
finite difference equation (the condition 1 being ex-
cluded); let A(x) be the commutative algebra of poly-
noms on K with elements of x as variables; let &7 be
the vectorial subspace of A(x) spanned by the polynoms
x7; let {e,} be a set of (¢ - n®- 1) polynoms in the vari-
ables x such that ¢,(x) =0, those (") - n? - 1 relations
being independent; let ﬂ{eﬂ be the ideal of A(x) spanned
by {e.J; then 7N 9oy =10}

This theorem seems to be natural, but we cannot find
a rigorous proof.

Nevertheless the above conjecture is true for n <4,
The basis is in fact orthogonal when » equals 1, 2, or
3 and in the case where [m],={ml, m}; m}=0;...; m"
=0} (yn), the Gel’fand states are then in Henrich’s
notations:

(i) n=1:
Tonl; %) = —rerrs 871 (79)
1s - (7,”1 ! ) ’
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(ii) n=2:

(M [m],; x)
1 2 1 1 1 a1t
=[ 1 (mi-mi+ 1) (md)! (ml—md)! (ml - mg)!]
g I +1)!
XXM<[m]2 '; (80)
(iii) n =3:
TM [m]s, x) = NxH<tmlz:
where
| N A i 2 i i1
+
N= 7”’-}—' [inl (m; — miq)! 11_11 (mi —mip)!
. , 172
X 1 (m,—mj+]—z){|
1 =i<f<3
. ) 1/2
(mi = m) ! ml = mE) ! (m} = m2 +1)
(m] +2)1(m3 + 1) m) = m3 + 1) (m] — m% +1)!
(81)
with m} =0;
(iv) [ml,={ml, m§,m3=0,...,m=0} wau:
T(M [m],; x) =Nx#<tmin°
where
N.—-_.-—li— ((m}—m%)!
m1!
- - 2 i/2
s DL Othey = g TRk = ) !)
'}:1 (m,,_j ~ Mpoje2 + 1)!
n=2 n-1 s ) 1/2
x[ UO (mh_; = m2 N H1 (ml;=mijq+ 1)] (82)
J= J=
with w,, =0, and
1m@t
netyn R
xicmlne —yplt 33 n W ,,_’ ),, n2 , (83)
it iy 0Sig<iyEn 11,32!
where
n-i,n n
=X
xo,tz iy
-1'
71.i;=mil.{2 RETCH M R RU T RN AN
My 1, are summation indices except for the cases
My, . =m)
0y 2 '2’
My i =mi, i>2,
(84)

My iy =Migipe1
m11,n+1:O-

(v) If the conjecture is true, this means that there
exists a matrix linking this basis to the Gel’fand basis
(by the Gram—Schmidt orthogonalization process, for
example ?), This is true in the n =4 case:

M fmlylm]y; x)
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No

o

><(n1z—7;14+2)_‘,x"’<["‘]3['"]4', (85)

(1)71 - my +1),(mj = ml +1),

where
[mls={m} -0, md, m}+o}

and the normalization constant is
-1

m\ 5 fmi—mi mb, —=m!
N: o ‘—I i N
W, ). \#iig —m mit = m’
t 1/2
Hig [mly
tm) ! 0.0 /V[m) (M, 0,00Ar,1 (86)
2 W3, Uy
CH
where
4 i A1 T8 i 1
A Diey (g +4 - T (mp, = mit))!
mly N (mi-mi+i=i! T (miT=miT+j-0)!
1=i<i<d 2si¢i<d
. 1 ; 3 I3 i
X I mit =mi+i—l I (mi = mi !
2=i<isq i=1
X I (mp=miy+j—1)!
1=i<i=3

and the V[m33(M,o, 7) are defined in (63).

(vi) Finally it can be mentioned that the so-called
normalized maximal and semimaximal states are pro-
portional to the maximal and semimaximal GL poly-
nomials. The proportionality constants are:

(o) for the maximal state:

1 n
=5 11 (] L)
KOS S|

gl = mi+ k=) \'? .
k_i(;;f-in—jk)! ])> (mpi=0); @7

X( Jl

(B) for the semimaximal state:

i
07, (mf—mi ) (nd,y = mi)!
m}'
-1/2
[m)
n
><<4[m]n_i) , (88)
where m,, =mul =0;
[m) H, (] A1 = ) T (md,y = mk+k j=1)!

A[m] M (mi= mi+k— ])'H1<k(mj+1 - Mgy +k—j)!

XT1 (ml-mby+R=91.
sk

b. Matrix elements of the irreducible representations

As a consequence of the above discussion, it can be
conjectured that the matrix elements, noted
DM<[m]nM>(x), of the finite irreducible representation
{m], of GLx, @), with respect to the Gel’fand basis, are
finite linear combinations of the element x7.

This is true in some particular cases. But, before
developing those cases, let us remark that if the matrix
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x belongs to U(r}, the represeniation is unitary and ir-
reducible. In that case, the condition m) c Z replaces
the condition m) < N, but it is sufficient to extend the
definition of the exponential,

’"n

n
xT= (i fp) ™ xTem (89)

The first obvious particular case is a corollary of the
multiplication theorem (64),

(a) The application GL{», ) —~
x~—Mplx),

where M,(x} is a matrix of order

nt+mlami=1
p_( n-1

whose elements are

GL(p, T),

n ( , . n ; it 1/2 tx-iT (
VT (g =mg )V T Oy = md*)! 90)
[i 4 i i+1 et 1 1 (71211 _ Wl:)!

with
Iml,={ml, mi=rce =m"%
is the linear irreducible representation of GL(z, C):
PEBm =D E€Bry,, P'(¥)= =p{x"ly) with respect to the
correspondmg Gel’fand basis. Let us note that the
exponentlal x7T is given in this particular case by
wal

n n J
n)mn ) E I (i}z_l , (91)
D y<q,jen 4,521 i

( ) (77")' (x12--

Imey
where
P ) L) (7) (j+1)
di=mgy=ny = M M,

mff; are summation indices except in the cases

m{B=ml=m?, m{)=m{-m?, m{H=m{i,=0.
They verify the betweeness relations
mBl < mi} < mily,. (92)

(b) Finally, in the GL(3,C) [resp. U(3)] case, the
matrix elements of the irreducible representation [m]3
(respectively unitary irreducible representation) are

«1/2
DM< [m]3M>(x) = Z(;’ [U[mlg(M<y g, 0)]
m} -
" i -
xx* " mi "> [V[m]3(M>,O', D] REER
mi+o

(93)
¢. Product of n representations of U(2)

The problem of decomposing the product of n repre-
sentations of U(2) into a sum of representations of
U(2) (Clebsch—Gordan decomposition) was already ap-
proached by Henrich. 19 Before we generalize Henrich’s
work, let us make a short summary of his results.

The Gel’fand basis, in the n =2 case, is formed by
the monoms

F(j -m 31) ): Zlbj (x%5 x%)
=[G =m)t (G +m) 1] 2GR (xd) ™, (94)
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The coupling of # angular momenta j;,...,j, must be
described in the space Q(jy,...,j,), i.€., the space of
the polynoms in the 2z variables xJ;', x], 1 <iy, i, <n,
which are homogeneous of degree 2j; in x}‘", %3, 1<i
<n,
Let x € M,(C) be the following matrix:
e 0 5 o]

°

x=|0-+ 0 7' x|, (95)

. . -

n-1 n
@ 0 x|
-xi = (x?-jyx?)-

To each matrix U= (u]) of SU(2), there corresponds
the matrix of M,(T)

Qoo 0 0

|2 0 0] (96)
0+ 0 uf u

0ces 0 uj

Then the action of SU(2) on Q(j,,...,,), defined by

Ruf () =fGU*), %)
Uesu(2), feQU, ... i)

is the product
051@,012@)0 o e®05n,

where /)7t is the representation of SU(2), with angular
momentum j;.

Then Henrich proves that all the subrepresentations
of ''®+:+®/)’", equivalent to /)’ can be found by looking
for the invariants in Q(j,...,j,, 7). Thatis, if {f,} is a
complete orthonormal system of invariants in
Q(j1s+++1da), then the generalized Clebsch—Gordan
coefficients are given by the following development

_ _mimzoum" ; o
f(x)_ ml,u§'m" (U, ji j2 cee ]n> I’l)mli(x) lpm’;(x), (98)

and the normalized vectors, transforming like z/),l,,"" are
given by

Z; i "y 7}'12““‘7}?"_1 j"

"’ujn . 1/2
= 1 H ) sovo 4
Z,l) "n (2] + ) > Ji Je2 Jnt My

Mirsosr My
X @) e Ut (). (99)

Then Henrich gives the following result: The set of the
polynoms
5 xM<[m]"‘

Fugm, - @) =N (100)

myl

where x is the set of subdeterminants of the matrix x
given in (95)

[nlo={mi=ml=j +jy+ovv +4,, mi=esr =m =0},
1 o .
my +7IZ%+1 =2(]i Ftiagtooe +]n)»

. 101
Mg = 2j (101)
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n - 1 1 2
N7t onf = mi ! H;’Q(ﬁ; mi ) T2 (g = mg)!
- T imy = mi, + 1)1

N

n=1
XTI (m) —mi, +1),
i=1
is a complete orthonormal system of invariants in
Oty e esdn)e gy +ooc +j, is not an integer, then
there are nonnull invariants in Q(j1 cee i

Let us now complete those results using the theory of
the exponential x7, Let us expand the polynom MLm),
already given by (83), in terms of the Um, {x;) functions.
Then we obtain after identification with (98):

my cce m
Mim),; . L7
(om0

" n 1/2
=[N I (4, =m ) (G, +m,)!]
i=1

X ) (—1)2'1'28‘1‘2( I

-1

(@41, = Biyey)! 54,;2,)

iy 14 <ip<
8
i1
1ig
(102)
with
1< i1 < iz Sn,
Xty =My 1, = P01, 1, = My 1o T 100
myy =mi, (103)

_ g
Moy, g =My, =my, 122,

. 1 1
Ji—my 2? Bu—zj; By +my = mi,.

The number of independent summation indices is given
by (n - 2)%, but it can be reduced to (z - 2) by use of the
binomial theorem.

Nevertheless, it is useful to introduce the “extra
quantum” numbers 7,:
My=jy iyt +i, 47y,
My =jig Fhi e Hia=7y, (104)

ry=0, Y3 =], ¥y =Jne

Then they must verify the triangle inequalities
7= v | <disv 47,
and we shall note

Moo m, My
M([Wl],,; =
Ji1°°* Ja

oom"
j!eeoj" .
Yyeoo v,

(105)

Finally, the usual equality
n
2 my =0,
i=1

must hold.

4. CONCLUSIONS AND EXTENSIONS

The theory developed in this work and the results ob-
tained can be divided in two classes according to their
independence or their relations with the theory of linear
groups.

I. We have introduced a new type of special function:
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The Gel’fand lattice polynomials which are homogeneous
polynomials of (¥") variables with positive and integer
coefficients. These polynomials are defined in two ways:
They are solutions of a “natural” finite difference equa-
tion and they can also be obtained from a generating
function, The tremendous effort to determine explicitly
the Gel’fand lattice polynomials when #n is larger than

3 is facilitated by a technique we work out: the peeling
process. These polyndmials have useful properties as
can be seen immediately from the results of Part 2,

It is worth noting that the lattice structure and the
binary expansion of a Gel’fand lattice is reminiscent of
probability theory. It is not difficult to imagine a pro-
cess of stochastic nature such that the “hierarchic
state” of the system is characterized by a Gel’fand lat-
tice and such that an elementary probability is asso-
ciated with each binary component. The corresponding
Gel’fand lattice polynomial will then give the probability
of that state.

II. The connection with group theory, which was the
starting point of this work, needs more comments, The
Gel’fand lattice polynomial now becomes a very compli-
cated function of all subdeterminants of an arbitrary
matrix of GL{z,@). The representation space for U()
being the Bargmann—Moshinsky space B[m]", it is
natural to write a basis of B;,,; in terms of Gel’fand
lattice polynomials. i

We have proved that a left Gel’fand lattice polynomial
is a basis of By, for n <4 and we conjecture that it is
true in general. We also obtained, in a particular case,
matrix elements of GL(z, €) in terms of Gel’fand lattice
polynomials and it is again conjectured that similar de-
velopments exist in general.

A generalization of the multiplication theorem as
proven in Appendix B would be the key point to confirm
our conjectures, In the case n=3 we emphasize the es-
sential role of the generating function (54), of the addi-
tion theorem (59), and of the diagonal initial conditions
(47).

We also obtained, using the preliminary results of
Moshinsky’ and Henrich, !? the explicit Clebsch—Gordan
coefficients for the decomposition of the Kronecker pro-
duct of n representations of SU(2).

Extensions: I, It is tempting, as suggested by Hen-
rich®? to try to extend to other simple Lie algebras the
Gel’fand lattice polynomials introduced for A;. The
answer would probably be given using the weight vec-
tors. *® The scheme for A, is supported by the following
reasoning: Let 7,..., 7, be the set of fundamental dom-
inant weights which is a basis of the root system of 4,.
To each element of this set corresponds a fundamental
representation of A;. Explicitly to m; corresponds the
identity representation {n} of dimension n (n=1[+1), to
7, corresponds the exterior power AH{n},

To each of these representations corresponds a weight
system labeling biunivocally a basis and consequently
a double weight system labeling the related matrix ele-
ments. A binary Gel’fand lattice is associated with this
set of double weight (except ¥). It is therefore possible
to reconstruct the general Gel’fand lattice and also the
related polynomials.
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II. It would be also interesting, on the basis of the
work of Wu, !¢ to obtain explicit relations between the
Gel’fand lattice polynomials and more standard special
functions met in the representation theory of GL(n,T).
Lauricella’s functions would be a good candidate for
this connection.
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APPENDIX A: EXAMPLE OF PEELING (n=2)

As indicated in the description of the “peeling pro-
cedure” we now illustrate the peeling technique in the
1n =2 case.

Let us write explicitly the fundamental difference
equation (17),

TOT?, T*

xT= 2 x xt, (A1)

where

mi m'l
T =mi mi, T'=m'} ) m'?,
- 2 ’
ms 1 m'’s
m}=m'}

TST =my=m'ym}=m',

w3 —m':

with the initial conditions

¢ 0

=x xi=x 0, xli=x !, (A2)

»

Let us consider the following chain s ={m!, m?, mj}.
The peeling lemma gives

m} m%
T Ts
X" = X 7,

; A3
mi| | mi (43)

with

~N
T . =mi m
s 2 J H

and x7s is a solution of the equation

m'

S Y ' ~
xTs= 27 xTsOT' X7 Tl =m'} '
" m's

(A4)

In the first step let us choose the arbitrary integers
m'}, m'}, m'} in the following way
mh=m?=m't=mb.

By the betweeness relation, the summation indices is
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now m and the equation becomes

sz:szemgﬂlxmg"ﬂ, (A5)
where
m}
mbs B=m}  wmd.
m}
The last term of (A5) gives, using relation (19),
Xt = (x} )”'2 (A8)

The first term is the solution of the following equation,

E xTsOTs xT,
n'y

(A7)

where T, and T} are now given by

m} m'}
T —mb 2 .1 \Z,z
s =My /ml, st =Wy /7’ 1o
0 0

The choice m'} =m '} =m? generates in (A7) two peels

xTt with the following T, (i=1,2),

1 i

my my
T,=mj 0, and Ty=mj mi. (A8)
0 0
Relations (36) or (37) can now be applied and give
1
17’11 m em m
PP N % S % ) I (A9)
my
i
ny 1 m
©e=l e gy, (410)
"y

Collecting (A3), (A6), (A8), (A9), and (A10) we obtain
the well known ,F; polynomial occurring in the repre-
sentation theory of GL(2, ), SL(2,C), U(2), and SU(2)
(ml = m}),

2 1_.1 2
m mye= =-my+m,+0
ATl @R P 20 )T foms
TV gl (m] - ml = mi +m +0)!
1 9 2 2
My =My =0 My wms -0
eyttt e
(mz—m%—o)! (7}71—7}12—0)! ol ’
N /.1 2
mi\ fmd\ fim
— k 2 ! (xl )’”}""% (xi )"‘%""%
miyf\m? f\mi/] ! 2
') 2
my=m m
X6 )™ o (=
2 2. 1 2 X%}
mz—m1;m2-nzl+l;;?;g). (A12)

(1f m} <m?, we must exchange the indices 1 and 2.)

This result can of course be easily checked solving in
this case the Diophantine equation (8) and using the
general result (18),

APPENDIX B: MULTIPLICATION THEOREM
(n=3)

Before we prove this important multiplication theorem
in the n =3 case, let us make some general comments.

747 J. Math. Phys., Vol. 19, No. 4, Aprii 1978

Let x and y be two elements of GL{1z, K) and let
AXyM De the set of initial conditions defined in (56)
with the #? constants

DLl xi=pl, 1<t<nl (B1)
The following identity is easily shown
= 2 LN 3
- ’?’1 )“zx‘t 1’ ’
. i
¥ (XY)I,M ptte e pit
=X Yy, 1<i<n, (B2)
Ly
with
~Z) ML A x, ,
(B3)

yxl=2 pitpgttee. leiy!(;-

Iy
Now from (54) and (57) we have two different expan-
sions for the generating function (let us choose m,=0

in order to simplify the writing),

1 1

®) (2 P>

_ E {[ n-l+l ()\) “‘ . ~m
1=l

T/m i=1

n  n-l+l miti-1 mlw’
(0 Wy )]
I=1  Jjel

Eart, i, a1

1
" (xy)

T

E (A(XY))

(iol)ﬂ

(B4)

where A(XY) is the set of initial conditions

AXY)={x"17y , K, set of multi-indices, 1<I<n},
(B5)

The existence of a multiplication theorem implies that
it is possible in general to “separate” the X and Y vari-
ables in the expression,

1

™ 1 "'%'
XY
TWI]? ( 1)

L) " e 72 .
A(XY) M<[m]nM>= m’ g a(){Y)T"'l, (BG)
with a(XY) defined by (48) and the X! and Yy, are re-

lated by the usual subdeterminant relationships.

In the n =3 case the “separation” problem is rela-
tively easy to solve, First we have

r ml\ fm" . 1 et 2 "
A(XY) 3= 2 93 (X Y ) 1(x23y23)

.3
2 Ty
m't ) \ms a{XY) ¢, (B7)

with
173
my my

Ty=m'} m
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mt—m’3
Ty=m't=m'} mi—m'3,
0
2 12v
XY, x1?y,,
LX(XY): .

Xy, X3y,
Let us now define A(X):{XK’}, /-\(Y)={YK,},
Xt x1 2 Yyy

a(X)= , aY)= .
13 7
X3 X' 3 Vg

It can be proved, using orthogonality relations between

the Clebsch— Gordan coefficients, that the so-called
separation formula is valid,

s2 . (Si— 2+1)71!
R e

81+82=7‘1
o1 o2\ [ol o2\
Sy=Sa\[S1= %5 2
X a(Y)S(deta(Y))2, (B8)
1_ 2 f\,2_ 2 ’
Vz—SZ 'V1—SZ
where
7i si-s}
R=v} 1} and S=v}-s} r3-si.
o 0

The X% (respectively YK,) are connected by the usual
functional relations between subdeterminants:

det(a (X)) = X213 - X312 = X'x? - A dxlEs,

(B9)
1,392,123
det(a(Y)) =Y,Y 3= YV p =V Vo5 = uinipsyiss,
Thus:
mi\ [m' 5}~ s}
Ts ‘ E
AXY) “= 1,2 o2 23
m' ) \m ) Lsyrsp=m®iom P \md-m3-s3
o7
s} - s} -
x ('t =m'P! (s1=s3+1)sd!
m's=m'~ sk
a
1 13152 41230 r_ (=1)
( 1 ) ( 174372 123) (X) 0!(82—0)!
mi-20 m?=si-o\|"

m2-si—o/ \m3+si-o
% {symmetrical expression in Y; ui, 7}, (B10)

where
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mi - 20

) m't—si—o mi-si-g
The=m'i-0 mi-c mi-o.
m'3+sieg m's+st-o

0

The expansion of A(X)T [respectively A(Y)7] in K powers
of x (respectively v), using Eq. (59), gives Eq. (63) by
identification of the A}, uj powers in the two develop-
ments of (B4).

Note added in proof: J.P, Gazeau assistant to the
University of Paris VII, addresses special thanks to
Madame A. Saunier-Seite, French Ministre des
Universités for the particularly serene research
“ambiance”®? created by her actual university policy.
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A conformal invariant model of localized spinning test

particles
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A purely classical model of massless test particle with spin s is introduced as the dynamical system
defined by the ten-dimensional O(4,2) co-adjoint orbit with Casimir numbers (s %,0,0). The Mathisson,
Papapetrou et al. equations of motion in a gravitational field are recovered, and the particle appears to

travel on null geodesics. Several implications are discussed.

I. INTRODUCTION

In the conventional special relativistic treatment of
“zero rest mass” spinning test particles, !=* geometri-
cal conformal invariance appears in a somewhat acci-
dental way* [just as for the unexpected O(4, 2) symmetry
of the hydrogen atom problem®¢]. It is well known
that such particles dwell on a null hyperplane (existence
of a wavefront), whence the related problem of localiza-
tion. There are severe difficulties when trying a general
relativistic approach®? for the massless particle gains
one supplementary degree of freedom (localization by
means of gravitational scattering),

The aim of this article is an attempt to reconcile,
to some extent, localization and geometrical conformal
invariance, »? by introducing a model where we have
insisted on localization along a curve of space—time for
any test particle (with or without spin) and conformal
invariance'® as a guiding principle. The model then
appears in an unambiguous way. Whether our model
(which has already been investigated, at least from one
point of view by Mashhoon!?) can account for massless-
ness of spinning test particles seems to be still under
dispute, since no clearcut definition of that concept has
been proposed so far.

We review in Sec. II a well-known procedure!? which
yields the Mathisson, Papapetrou ef al. equations of
motion of a test particle with spin in a gravitational
field. I In order to get a deterministic set of equations
of motion, one must impose supplementary conditions
on the skew-symmetric spin tensor 5%%, the linear
momentum P* and perhaps the velocity V*. Let us re-
call briefly the different possibilities.

As shown by Dixon, * the condition $*#P, =0 seems
to be more appropriate than the condition S“BVa =0 in
the case of massive particles. A “natural” limiting
procedure leads to the following conditions for mass-
less particles, S*®P, =0 and P,P*=0,% %% Thege are
in fact the basic constraints entering the previously
quoted conventional model,

On the other hand, according to our program, once
assumed that some localized action functional for a
spinning test particle [see (5) below] be conformally

U, E.R, Expérimentale et Pluridisciplinaire de Luminy,
Université d'Aix-Marseille I, and Centre de Physique
Théorique, CNRS, Marseille,

®Université de Provence, Centre Saint-Charles, and Centre de
Physique Théorique, CNRS, Marseille,
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invariant, extra conditions, namely S**V, =0 and P, V*
=0, readily follow under the sole requirement that

S*® be singular, It is then straightforward to derive
that the particle travels on null geodesics. We claim
that Mashhoon’s arguments in favor of the latter sup-
plementary conditions are essentially pervaded by con-
formal invariance assumptions. It must be emphasized
that the O(4,2) invariance can be ruled out in the flat
spacetime case, Section III is thus devoted to the
construction of the symplectic structure of the space
of motions which is shown—in the free particle case—
to be symplectomorphic to a certain 10-dimensional
coadjoint orbit of the “conformal group” O(4,2). This,
of course, turns out to be no longer an accidental
invariance. We get rid, at the same time, of the in-
stability near the zero curvature of those models intro-
duced by Kiinzle’ and Saturnini, '°

In the last section we show that the fundamental hypo-
theses of Friedmann’s cosmologies need not undergo
any modification when spin is admitted for cosmological
photons.

iIl. AMODEL OF MASSLESS SPINNING PARTICLE
IN THE GRAVITATIONAL FIELD

For a more detailed account, see Ref, 12. In the
case of a continuous distribution of matter, the identity
of conservation of the energy momentum tensor'®

3, T*5=0 1)

is a consequence of the “general covariance” principle
which states that the completely continuous functional

T(6g) =4 J, T%*6g4s vol @)
must vanish on those perturbations 8g of the gravita-
tional potentials which are Lie derivatives with respect

to any differentiable vector field with compact support'’;
briefly

T(£28)=0 ¥ = X(M). (3)

As for localized test particles there exists a standard
procedure which brings, using (3), the following action
functional'®!?;

T(og)=1% [, (T**0g, + T3°6T ) dt (4)

into the final form
T(8g)=1 [ (PoV*0g,,+S** V"3, bg,,) dt, ®)
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where V is the tangent vector to A with respect to ¢t. P
and S respectively interpreted as the linear momentum
and the skew symmetric spin tensor satisfy, in addition,
the following universal equations?® (Mathisson,
Papapetrou et al. equations of motion):

P=—-1R(S)V, ®)
S=pV-vVP. (1)

At this stage one may recall that, in the continuous
case (2), the tracelessness of the Maxwell— Poynting
tensor (for photons) or the Weyl energy momentum
tensor (for neutrinos) can be expressed equivalently
by the following conformal invariance?! of the function-

al 7:
7(g)=0 Wxrc Cy(M). ®)

It now seems reasonable to maintain Eq. (8) even in the
case of concentrated distributions of matter. It is then
easy to deduce from (5) and (8) that

SV=pv (9)
and

Bv=p (10)

for some real function ¢ defined on A.

Let us, furthermore, assume that the spin is singular
{the condition that the spin should have rank 2 is widely
accepted as a central prerequisite), namely

det(S)=0 (S+0). (11)

A quick inspection on the spectrum of S shows that
whenever Tr(S?) < 0 at one point of A, one gets in view
of (1) %

u=0, (12)
Tr(s?) =: - 2s? =const, (13)
Vv=0, (14)
V parallel to V. (15)

The particle travels on null geodesics although its
(spacelike ! %) linear momentum and its spin are not
parallel transported along A [(6), (7}]. The quantities

- 90

PO +3Tr (S . —a—)?> = const (18)
are conserved as long as ©® ¢ X (M) satisfies

t.g=2g [xe CM)]. (1m

[This can be checked using (9)—(12). ]

1. SYMPLECTIC STRUCTURE AND CANONICAL
0(4,2) INVARIANCE

Let us start with the observation that the constants

of motion (16) associated with any conformal Killing
vector field © of spacetime provide us with 15 conserved
quantities in the flat Minkowski spacetime E, More pre~
cisely, the general solution @¢ X(E) of

f g:)\g, AEC(E)’
reads?

0=A"X+T+ARXX)-2XAEX)+aX (XeE), (18)

where Ac L(E) and A+ A=0 (Lorentz rotation), ['c E
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(translation), A< E (special conformal transformations),
o e R {dilatations). We then define the dual conserved
quantities (M, P, K, D) by

PO +iTr (S' 2i)=:§Tr(MA)+ﬁI‘+I—{A +Da

(19)
and thus find
M=S+XP-P-X, (20)
K=PXX)—-2X(PX)-25*X, 21)
D =PX. (22)
Set*
[ A -TVZ AVZ
z: |-AV2  -a 0 , (23)
Lm 0 o
[~ M -K/N2 P/N2
w: \-B/VZ D 0 . (24)
| K/N2 0 D

It is easy to show that Z< G, , [the Lie algebra of
0(4,2)] and that pe G}, since the quantity (19) is equal
to

Tr(n - 2)=:p(2). (25)

Let us then consider f2e 10-dimensional coadjoint orbit
of O(4, 2) Qf, defined by the equation (minimal
polynomial)

ut +pls?=0 (secRY, (26)
which yields the following compatibility relations
det{S)=0, (11) 27
Tr{s?) =-2s%, (13) (28)
P*(S)P=0.% (29)

Note that (28) and (27) are in fact respectively inter-
preted as the Casimir numbers of degree 2 and 4 of
this orbit, The last one vanishes as can easily be seen
on the characteristic polynomial of p.

As a final remark, the generic element of 2§, is in
matrix form

[0 <xs 0 o] o|0]
xs 0 0 0100
0 0 0 0 01
0 0 0 00|y (30)
0 0 1 -n0j0
| 0 00000J

where X} =7° =+ 1. 4, is thus the union of four con-
nected components. X and 1 are physically interpreted
as the helicity and the sign of the energy as usual for
massless particles.

We will, however, confine ourselves to the consid-
eration of the connected component of the identity in
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Of4, 2) and put x =7 =+1. The co-adjoint infinitesimal
action

Spi=[z,n), Z€Gyy, relGl, (31)
reads

SM=[A,M]+(T+P-P-T)-(K*A-A"K), (32)

SP=A-P+2AD—aP-2M‘A, (33)

BK=A*K~-2ID+aK-2M-T, (34)

6D =PI - KA. (35)

Define then according to (27)—(29)
Vy:={y=(S,P,X); Sc L(E); S+5 =0; det(S) =0;
Tr(S?) =-2s%; Pc E; P*(SPP=0; X< E},
(36)

which is called the evolution space' or the space of
initial data since each initial condition y defines a “mo-
ment” i e G}, by the application y = [(20)—(22)].

The infinitesimal action of O(4,2) on Vy; can be com-
puted bearing in mind that (18) must hold, and by
(32)—(35)

6S=[A+2(4 X -X-A),S] (37)
P=[A+2(A-X-X-A)]P- (0 -2AX)P -2S+A, (38)
5X=0 (18). (39)

It is well known that every nontrivial co-adjoint orbit
Q of a Lie group can be endowed with a symplectic
structure (2,0) (e.g., Ref. 1). In the case of a semi-
simple Lie group

o(6p)(6'n)=pn((z,2')), peQcg*,

bu=[z,p], d'p=I[Z",ul, Z,2’<q.
A tedious calculation shows that in the case of
Q<G

o(Bp) (6" 1) =~ (1/s2) Tr(8S+ S« 8’S) + 6X6’P - 5'X6 P

(41)

along with (37)—(39). We can hence define a presym-

plectic structure on V,; which may be still denoted by
o without any ambiguity:

40)

o(6u)(6'1) = o(By)(5%y). (42)
The equations of motion 6y <= ker(o) are given by
5S=P5X — 6XP, 43)
OP =0, (49)
bX=7*(S)*+P (rcIR). (45)

Define Uy := Vy;/ker{o). o is an integral invariant of
the distribution y —ker(o) and thus

o(6y }(6'y) =:0(5x)(6’x), (46)

where x denotes the class of y, Uy, is thus a symplec-
tic manifold, fhe space of motions,! which uniquely
defines a model of “zero rest mass” spinning particle
since it can be easily shown to be symplectomorphic
to Qf,. %
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Let us take into account the gravitational interaction.
The simplest way of introducing the minimal gravi-
tational coupling is to replace the derivatives 6 in (41)
by covariant derivaties 8. The requirement that o be
still closed leads in fact to the following expression

0(6y)(6'y) = — (1/s}) Tr(8S °S - 8’S) + 6X 6'P
—5'X5P+ 18X - R(S) -« 8'X. (a7)

The equations of motion read in this case

§s=P-6X-56X-P, (48)
8P =—iR(S)-bX, (49)
bX=7*(8)?-P (r=IR), (50)

in full agreement with the previous [(6), (7), (9), (10),
(12), (14), (15)] results as soon as one puts V:=(1/7)6X,

IV. CONFORMAL PHOTONS AND THE
COSMOLOGICAL HYPOTHESES

In the current formulation of homogeneous cosmology,
the compatibility of the 3K microwave background and
the model of the universe can be expressed by the
existence on spacetime of an infinitesimal conformal
generator ©. 27?8 It can be shown that the fact that mat-
ter flows along the orbits of © is a consequence of two
basic cosmological hypotheses:

(i) Light rays are null geodesics;

(ii) the cosmological radiation is an isotropic black
body radiation.

Clearly spin is neglected for photons. If spin is
taken into account, (14) and (15) apply just as well. The
solution to the second hypothesis challenge can be
pictured as follows.

Put
=30, (51)

where 8=1/kT (k is the Boltzmann constant), U is unit,
future pointing and geodesic (matter does not experience
any net transfer of energy and momentum from the cos-
mological radiation). (17) yields that grad 8 is thus
parallel to U, whose curl vanishes.

It is then clear that (16) reduces to
PO = const (52)
just as if spin were absent.

In other words, if the energy of the photon in the
matter frame U is expressed in terms of frequency v
via Planck’s law, we still have

v/T =const. (53)

The spin of the photon does not modify the cosmological
interpretation of the redshift, in complete accordance
with Wien’s law which guarantees that the cosmological
radiation remains a black body radiation in spite of

the change of temperature,
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The equations of moments equivalent to BBGKY and to the master equations are established with the
introduction of an appropriate formalism. We end with the deduction of equations generalizing
hydrodynamics. This article is limited to the monoparticle populations.

I. INTRODUCTION

Classical statistical mechanics reposes on Liouville’s
equation,* whence the BBGKY? system is deduced by re-
gression and on a hypothesis of irreversibility intro-
duced in the latter. The most famous hypothesis is that
of molecular chaos which leads to Boltzmann’s equa-
tion!+® and with which Chapmann, * Enskog, > Burnett®”?
and Grad™® have determined the expressions for the
transport coefficients of dilute gases, We owe to Grad™®
a famous method obtained on developing the single dis-
tribution function in Hermite tensorial polynomials of
the components of the relative velocity vector. The de-
velopment coefficients are combinations of the distribu-
tion function so that, on substituting the approximation
of the latter into the integral term of Boltzmann’s equa-
tion and on making suitable integrations, one obtains
the set of equations of fluid mechanics. One then de-
duces their viscosity and thermal conductivity terms.
Like Boltzmann’s equation, the main kinetic equations
are deduced from BY1 (with possible “manipulations” of
BY2 to obtain approximations of the integral term). One
may ask if this description suffices for all fluids.
Bogoliubov™? has replied positively to this question for
dilute gases but one may doubt that this would obtain for
dense gases, plasmas, or liquids. Sandri,!®'! on in-
troducing the “master equation” idea, is entirely of
this opinion. However, it must be recognized that such
a step, above all, runs into difficulties because of the
complicated formalism. In particular, Grad’s method
(mentioned above) is difficult to transpose to higher
orders.

On returning to the BBGKY system, we will, in this
article, introduce the relative moments of the distribu-
tion functions of arbitrary order and, by integration,
obtain the general systems of the equations of single
(order one) and multiple moments.

I1. SPECIAL NOTATION

To arrive at the equations of simple form, it is
necessary to introduce a particular notation and con-
vention'?:

(1) If necessary, we will use the same symbols for
the signs and physical quantities as confusion is im-
possible. Thus n may be used indifferently for a particle
density or the sign of the number of a particle.

(2) The signs may be placed below, above, on the
right, or on the left. The numbers of the concerned
particles are shown above; those on the left characterize
a direct relation with the particles; those on the right,
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an indirect one. The Cartesian components are shown by
signs placed below and on the right. For the applica-
tions, it is not necessary to distinguish the variance

as the space is properly Euclidean. Thus, *X and °w
are the position and velocity vectors of the particle of
number a which we subsequently call particle a. The
components are of the following type: 'x, for the first
Cartesian component of the position vector of the parti-
cle 1; *w, for the jth Cartesian component of the velocity
vector of the particle 2,°°*, These conventions extend to

‘the tensor components. ''T,; is relative to the particule

1, 1287, to the particles 1,2, and 3,°-,

(3) This notation is accurate but heavy. Now, the
BBGKY system of equations is a system of scalar equa-
tions obtained on summing over the components of the
vectors attached to a whole series of particles. Thus it
is interesting to attempt to lighten the notation. To
achieve this, we have to use two sets N* and I'* ., // is
the number of the particles of the population concerned,
IN* is the set of // natural first integers,

N* 2{1,2,3,...,Y,...,/\/—z,/\/—l,/V}o

Iy will be the set of the small greek letters com-
pleted by N elements: IT*  ={a,B,¥,c00, Pyeess &, ¥, £h
the presence of non-fully-written elements is without in-
cidence since the generality of the various reasoning
only gives rise to a, B, v, p, &, ¥, &.

Let us introduce the bijection 7 between the two sets,
IN* & I , such that

rl)=a, h(2)=8, () =y, ..., hir)=p,
eo ey h(/\/—z)zﬁ, h(/\/—1)=¢, h(/\/)=€a

The element ¢ is a variable sign which can take each of
the Cartesian positions of the particle 1. When it is re-
peated, we apply Einstein’s convention and sum up,

A B,='AlB +'A, 'B,+'A, 'B,='A"'B.

The element § is a variable sign which can take each of
the Cartesian positions of both particle 1 and 2. When
it is repeated, we sum up to obtain

AB,='A 'B, +'A, 'B,+'A, 'B,
+ 1A, 'B, +%4, %B,+2A, ®B,,
Ag By ='A°'B +2%A- B,

and soon forvy,..., p,..., £, §, £. Such quantities are
come across in classical statistical mechanics. In a
general manner, the sign p is associated with the »
first particles and its repetition implies the summation
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over all the components of the » particles,
AB,='A1B+2?A°%B +°> +7A- "B,
Ty ="T1 A +1T, A, +17,,t A,

+BT A, +3T,, %A, +3 T, %A,

oo +TIT U TA T, TA, + T, TA,,
Lastly, we define the elements of the set T*,

where
ﬁ ={E’B77}°",5}"',E’—zp}

comprises only // — 1 elements of which each is a vari-
able sign taking the three Cartesian values of the parti-
cles that are not concerned by their homolog of I'* ,
for example, p concerns and describes the components
of the particles »+1, r+2,...,/V; since p is relative
to the particles 1,2,,..,7. This allows us to write
VpeI*¥ =pecl™,

AEB: :APBD+ABBE'

(4) The notation relative to the acceleration vectors,
to which the particles are submitted, must be especially
adapted if one wishes to arrive at condensed formulas.
The interaction force sustained by the i particle under
the effect of the particle j is X/ and the force of exter-
nal origin is iX. One will note that the signs on the left
are relative to the particles sustaining the forces and
that the sign on the right are relative to the particles
inducing these interactions. For the corresponding
acceleration vectors, we suggest the following notations,

iaj:_ig’ igi— z

m m

Thus the acceleration sustained by the number { particle,
through the external and interaction forces with the
first n particles, is written ial“"":zj:’l' iad; the symbol
ay'*** then represents one of the three components of the
acceleration sustained by any one of the first » particles
under the effect of the external forces (if number
e[n,...,u], and the interaction forces, with the set of
particles whose number belongs to [n,...,«]. Thus, for

example,
=3 J-u i=

sV p, = Z; P2y tal ip,.

(5) We will end with the signs on showing the sum of
the components of a tensor of arbitrary order, obtained
by circular permutations of the signs, in the following
form,

T’l’z""a-llq

+T

Tigtgent iy =

dee 4 T

Iyeeolgoilghy Tgllgeseloy s

for example, we will write:

T pyogbogy=Toyogo, * Torp Ao, + Too s,y

LR gy
Tpx(”zA"s) T"l"zA"s + T"l"sA

2 (V, Vyooo V, )=V, V, ooV 2 v
oa hte O S R PP

(6) Lastly, the phase-space volume of the » particles
will be

demx dTw=dix Ex oo Ik d'w dweedw,
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with classically dix = dix, d'x, d'x,,
likewise d'w =d'w, d'w, d'w,.

The principal conventions being established, we can
begin the calculations on a population of // particles.

1. THE BBGKY EQUATIONS AND THE MASTER
EQUATIONS

On calling /) =/) (x;, we, t), the phase-space density for
a population composed of // identical particles, we de-
fine the generic distribution function of rank // such that

loaa N F=/V!00

On multiplying Liouville’s equation by A/!,
the A/th BBGKY equation,

we establish

a a leseN a losoN —_
(at g 5+ ol awc> F=0, 1)

The other generic distribution functions '**°7F of rank
r (lower than //) are obtained from ***" F,

——-—(NET)!ng’_“ d™"w e dix d¥w

To achieve this,
7 to write (2)

1ouorF

looarF= locoX F. (2)

it is practical to introduce the operator

¥ F, with

P — 1 +1 +1 noo JN N
r—(/\/_y)!fd’xd'w d¥x d¥w. (3)

One will note that # commutes with the operators

%, d ar d [with p =h(7)].

Yo @; > e ow,
To obtain the »th BBGKY equation, let us apply the
operator # on Eq. (1),

2 : 2
O opy &g preeer L Yyl p
(at Yo x, " e aw) ”

-~ a leooN a losoN
+ 7’(1,05 -a— + (,l a—u;;) F
+le a locoX
+val F=0, 4)
aw

4

In Eq. (4), the term

d ]
- + looo ],oceNF
? (”’" ax, aw‘_,)
is zero; indeed, since !**** F — 0 when the vectors X or
w tend to their limit values. On the other hand, as the
particles are indiscernible, one may write

O leven g R I Yo
— F=(N-~77a, 3

4 P

“F

rélecoN
P

ra
or again
0
Jd?x &7w (r+1)8 aptt s N F
—_— ——— w,

according to the recurrence relation drawn from (3),
linking # to (»+1)8,

R S AU
= _T)fd' x & tw(r +1)8.

Y
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As (r+1)3 and a7**(3/9w,) commute, on taking account of
(2), we write Eq. (4) as follows:

0 0 loser 0 loeor
<at +wp$c—p+ap 6w,,) F

+ [ dix dtw al? 2 rerapoy,
—_ dw,

)
This equation is BY»—a BBGKY equation of rank », The
BBGKY equations of rank greater than or equal to » con-
stitute a closed system of equations coupled two by two.
The determination of ****"F is followed successively by
that of !***"F, then '°=#~!F +s¢ then **"*!F, It should be
noted that this manner of calculating !***"F is not unique
and that Eq. (1) and the definition (2) of !***"F also
suffices. However, Eq. (5) has another interest, gen-
erally speaking, the description of a “gas” may be suf-
ficiently minute with #**"F, therefore it is desirable to
know the equation having the solution !****F; such a
specific equation of the “gas” will be worked out by the
physicist from BYy with the adapted hypotheses and
approximations.

The equation, having the solution !**°7F, is called the

master equation of rank », ME7 in short,

bl 0 0
+ lesor _ - lessry :lu-or
(at +w, =— o, a, awp) F I, 6)

where 'o**7[=1r] (***F) is a functional of !**"F,

Such an equation—if it exists—will depend on the studied
“gas” and the considered physical conditions. However,
with the help of realistic hypotheses, it is theoretically
possible to supply an approximate expression with ap-
proximations over BYr». However, one must be able

to fix the adapted » rank beforehand.

IV. SYSTEMS OF THE EQUATIONS OF MOMENTS
EQUIVALENT TO BYr AND ME/

The moments ****"M, .., (x,, t) of the distribution
function'**7F(x, w,, ), have by definition the expression
l'HrMpla..pl :/ dln-.rw oo.erpl"”wpl’

1=0,1,.,,,+.

3

(7

We will also use an expression including (7) on defining
the “projected moments” which we will subsequently
call “projection”:

looerenou . leoor, leseresey
° —fd w prl. e lWp s (8)
1=0,1,... +,
loca¥osoul 3
uMplnupl (xp’ t’ xr+1) e ’xu’ wr«-l) . wu) 18 the “pro'

ted moment” Of len-roech by 1 ”uF by la..rF

With the aim of obtaining a system equivalent to BY7,
let us make the operator [ d'"**"w w, 4+ s, act on (5).
We obtain respectively the terms

. 0 d
leosy, PO leser s lessr
S rw Wo, "W, == F= 57 My ooeops ©)
g d
leosr, e Lessrpo loes
fd W W, Wy W, T F= ppe "My .opoprt
i+l Pre1
(10)
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The two following terms require more detail; the third
is transformed by integrating by parts,

a
soo¥ sos locoy -~ l-oan
fu w91 wptapzu_ Jw
Pra1
91+1 au)
Prel
— aleeorf' dlonurw 1...7F6 w w
Prel pl‘.l(pl proce™oy
looor 1o looer
=-ag, fd "w Fw,, W, )
looor
——a(pl M"1""’1-1)° (11)

Lastly, the fourth term, called the “collisional term,”
is written

looo 7, coe T sl +1 r+l leeorsl
fd ww, w,,fa" ¥ dw agy, S, F
alnarHF
= [d" d&*'wat [dTww, w, ————
/— Pre1 f 1 i dw,
I+l

coril ("”"1 w"l)

du,,

— L2 vl 7+l 1---r
——fd’ x d wapmfd

- fdnlx am* fdl.--ruw Leeersl g

.
w
Prel

Py’

—_ 1 1 lsespsl
== [ dx ay M, e (12)

The sum of the terms (9), (10), (11), and (12) consti-
tutes the system of the equations of moments equivalent
to BYr and we obtain:

w,.*
”zu(pl 41

a il Lees 0 leser — gleeer lessr
3t rM t+ x, prl'"phl e, M"l““’z-l)
1+l
+ A M, L, (13)
r=1,2,.../ -1, 1=0,1,.., +=,

An important case is the one obtained on making [=0
in (13),

O Luaer 9
57 M A s

0

Leerpf =0, (14)

This equation, expressing the conservation of the r-plet,
is a generalization of the equation for the conservation
of the particles. It will constitute one of the first selecs
tion criteria for choosing a master equation.

Likewise, on applying the operator [d'**rw w, RO
on (6), we obtam the set of equations: !

R 3
= leeo + leser
ot M"l"”"t ox, Moyeeioran
1+l
loosyr 1o lose
—a(pl r "1""’;-1) + erl'"pt (15)
r=1,...,N=1, 1=0,1,..., +=,

where

loooy

_ oo leoo
pt—fdl W Wy, 0, L

Expressions (15) constitute the equations of moments
equivalent to the master equations (6). A “gas,” whose
behavior is approached by kinetic theory, may indif-
ferently be shown by (6) or by (15) according to the re~
quired applications or uses. In particular, if the par-
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ticles are conserved, one must have !°***I such that

1ae°rJ:fdlooorw louurI=0°

V. EQUATIONS OF “HYDRODYNAMIC"”
QUANTITIES

If the physical conditions are adapted to a hydrody-
namic approach, it is useful to define the first “hydro-
dynamic” quantities from (7) and (8). To do this, we
will call density »-tuple the first moment of ‘*°**F and
will symbolize it by =T =*""TM.

In the same way and by analogy to the first rank, we
define the average velocity »-tuple ****" v, by using the
second moment of !*°°7F,

locoy, lessr, —leser
n v, = M,.

The mass of the particle being m, we are able to de-
fine the hydrodynamic quantity of the /th order of rank
7’,

leasr gy (F) [ Jloeor _lesor
Porereo; =™ J&rww, v,,l)

(16)

cee (wp’ - 1-.-rvpl)1-..rF.

In particular, we have for the terms of the first orders:
1oonrp =m (r) leso rn’
loo orppl — O,

:m(r) (ltoorM

lover loecey,, Llooory loocer 17)
- ity v (
f1P L "2)’

lesor,, leser
+2 n v
P102P3 °y Py

Toooy Lesoy
- M( Py03 vﬂs)) °

Doyos

less oy (PY (Losory
rpplpng"m i ( M

With the aim of obtaining the equations governing the
“hydrodynamic” quantities, relation (17) allows us to
write:

lenorﬂl:luoerm

.\.ooerM looor lesory,
= n v
3 (%4
1 1

looer —_ (=riloser loaor,, loear loosr
]W"U’z =m p"l"z n v"x U"z’ (18)
lecoy — (~r)(looor losoz leasyp
[wpl Poby m ( Ppl PoPy b 212 1}93))
leocor,, lessr looar Loooy
+ n Uy, Vs, Vpge

To lighten the notation to the extent where the rank »
is fixed, we henceforth set:

_looer —looor e leeery
n= n, 1)9— Um pple.apl" pplnopl;

ap:aénor’ Jpl”nplzln.r']plu-nﬂl'

On taking account of relation (18) and on combining
the equations of moments (15) relative to a master equa-
tion of rank », we obtain the set of hydrodynamic gener-

alized equations:

d 0
37 n +5Z(nv,,l)-—J,
1
il a d i

om 57 Ve, +, @;U‘ﬁ + 5@1’”1#2 =m'r (J,71 +aplnv‘,1J),
0 0 a'l)p

— — 272

ot Poye, * 3%y, (pplpzpa * Upsp,,lpz) T Pogtn, axas

:m(”(‘]ﬁlpz - ”(lepz) +vplazJ)° 19)
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It is interesting to note that these equations are formally
identical to the classical equations of hydrodynamics;
the latter, moreover, are obtained as particular cases
when, in (19), we set =1, the distinction is only made
with the possible values of the signs p which allow the
fixing of the rank ¥, The detail of Egs. (19) passes by
the knowledge of the corresponding master equation
which allows us to calculate the J,

VI. CONCLUSIONS

The immediate exploitation of Egs. (13) and (19) is
not possible, However, their existence, like that of the
BBGKY system, allows the physicist to have a base
upon which he will “graft” his approximations in order
to obtain a useful model for the applications.

For example, if a master equation [of type (6)] cor-
rectly shows the behavior of a population of // particles,
one may, if necessary, use a2 method comparable to
that developed by Grad with Boltzmann’s equation if the
macroscopic behavior is “fluid.” That is to say that in
the right-hand sides of (19) (the integral terms), one
uses an approximation of !*°°*F on curtailing the infinite
series,

teeorpp EXP(=w¥/2) R 1 |, Looar
"F= “@nsygz AT Coporen,(ty %) )L/plouopt(up))
(20)
knowing that, to define !***"F, one sets
Lesorp o J7yi, {170 32 ey, Toooy
F= {gn (k,T) 4 "7F, (21)

7/, ..o, are the Hermite tensorials polynomials, !°
and '*°°7y is the correlation function,

One easily shows from (20) that the coefficients ( are
written

T e ()= AT T L VT

It seems that this work finds applications in the calcu-
lations of the fluid transport coefficients when
Boltzmann’s equation or any other kinetic equation (of
order 1) fails—quite obviously —to the extent that a
representative master equation exists,

(22)
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Scalar-vector instantons in n dimensions: Surface terms
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By an analysis that respects surface terms, it is shown that the equations of motion for a non-Abelian
gauge field A% coupled to a scalar field ¢’ possess no regular, finite-action solutions in »-dimensional

Euclidean space except for n =4, with ® trivial, and for n < 4.

It has been known for about a year that the equations
of motion for a non-Abelian gauge field A% coupled to a
scalar field & have no regular', finite-action solutions
in n-dimensional Euclidean space except for n=4, with
& trivial, and for < 4. Most proofs® of this result
seem, however, to assume the absence of certain
surface terms. The purpose of the present note is to
provide a demonstration that is independent of that
assumption.

The action functional S will be taken as the integral
Jd*x [ (x) of the Lagrange density

L) =4F2, (x) +5|Did ()] + V[ (x)],
where
F';-Lv = auAg - avA‘:L - efabcflfl»Anca
and
Dip=23,0" +ieAl s &),
The matrices /* are the hermitian generators of a
representation g of a compact Lie group G whose

structure constants are f,,.. The potential V is assumed
to be nonnegative,

Under the Derrick® transformation, & (x,2)=&(\x)
and 4, (x, A} =24, (\x), the action becomes

S(A)=2A%"S, +2FTS, + TS,

where S,,S,, and S, are the contributions of the vector
field A, the scalar field &, and the potential V
evaluated at A=1, These terms are all positive and
finite if the fields A, and ¢ are nontrivial and of finite
action, The derivative of S(\) at x=1

S )= -n)S, +(2-n)Sy —nS,

is strictly negative for n =4, unless ® is trivial, and
for n> 4,

It will now be shown that this same derivative S’(1)
is positive or zero if the fields 4, (x,1}=4 ,(x) and
®(x,1)=®(x) constitute a twice continuously differenti-
able, finite-action solution of the field equations. The
demonstration uses an interesting property of the radial
gauge, x, A% (x)=0, whose universality may be proved
by an obvious modification of a well-known argumen’c.4
The derivatives of the fields A, (x,)) and & (x, ) with
respect to » at A=1 are

$'(x,1)=x,9,8(x)
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and
Alrx, 1) = A8 (x) +x,8,48 (x).

In the radial gauge, these derivatives are
&4i(x, 1)=x,Did(x)

and

Ay, 1) =x,F8 (x).

v v

Let S(A, <R) denote the action due to the fields

A, (x,2) and &(x,A) for | xi<R. Then from the

assumption that the fields 4, (x,1) and &(x, 1) constitute
a twice continuously differentiable solution of the field
equations and from the compactness of the region
{x1< R, it follows that the derivative of S(, <R) with
respect to x at A=1 is the integral

S'(1,<R)=R"?[dQ x [F2 Al* +5(Did)*®"

+ 4" y*Dig]

over the surface of the sphere [x|=R.
gauge, this surface term is

§'(1,<R)=R™2 [dQ (x,F2,)* + |x,Di® 2> 0,

In the radial

which cannot be negative.

The action $(\, > R) due to the fields A {x, ) and
& (x,A) for [x|> R consists of three terms that may be
written as

S(,>R)=S,(\,> R} +5,(x,> R) +S,(\, ~ R)
=18, (1,> AR) + A28 (1, > AR)
+A7S,(1,> AR)
in an obvious notation. Thus
S'(1,>R)=(4-n)S,(1,>R) + (2 - n)S,(1,> R)
-nS,(1,>R)+R 3S(1,>R)/3R.

If the action of the hypothetical solution A, (x,1) and
&(x,1) is finite, then the first three terms on the right-
hand side of this equation can be made arbitrarily small
by increasing R sufficiently. Similarly, there must be

a sequence of points R;, tending to infinity, on which

the product R, 3S(1,>R,)/3R tends to zero; for otherwise
the action would be at least logarithmically divergent.
Thus, since

$7(1)=8'(1,<R,) +S'(1,>R,) = S’(1,> R,),

it follows that S’(1)= 0 as promised.
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Suppose now that the potential V(®¢) is invariant under
the action of the group G, that ®,#0 is one of its
minima, and that the homotopy group = __,(G/H)+0,
where H is the little group of ¢,. One may look for the
field configuration that has the least action in each
homotopy class. The fields

e()=f(|x|)g®e,
and
A% (x) = (i/e)n(| x| )2 ,g(X)g ™ (2),

where £=x/|x| will have finite action if f and % are
smooth functions that rise (% like x*) from zero at x=0
to one at | x| =7 and that remain equal to one for [x!|> 7.
A very crude estimate of the action of such a configura-
tion is

S,=er"*, S,=v"% and S, =",

Thus, for n> 4, the singular configurations with »=0
all have minimal action, S=0. Also for n=4, and

@ nontrivial, the singular configurations with »=0
have minimal action S equal to that of the same system
without the scalar field, provided the latter possesses
suitable solutions.® For »n< 4, the least action is that of
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the solution to the field equations, whenever the latter
exists.
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Killing vectors in plane HH spaces
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Employing the spinorial approach to the structure of hyperheavens, we integrate completely the Killing
vector equations for plane (case I) hyperheavens, reducing them to one master equation of an extremely
plausible form. (In this process, optimally simple gauges are demonstrated for each Petrov type.) The
mechanism of generating Ernst potentials by Killing vectors is then investigated, and explicit forms are
given. Also, some interesting preliminary study of Killing spinors of type D(0,k) in heavens is presented.

1. INTRODUCTION

This is a paper in the series on the structure of
hyperheavens (HH spaces)—left-degenerate solutions of
the complex Einstein equations, in vacuum or with the
cosmological constant or an electromagnetic field
properly aligned with the complex gravity—initiated by
Plebafski and Robinson, ! The principal reason for our
interest in these solutions is that their real slices
describe, among other things, all algebraically de-
generate real-valued solutions of the vacuum Einstein
equations. It is therefore of interest to investigate the
roots of the possible symmetries of these real solu-
tions, still on the level of the complex-valued theory,
where general regularities are more easily noticed and
effectively treated, Moreover, we know® that in the case
of {(complex) heavenly manifolds— H spaces—all the
Killing equations can be effectively integrated, reducing
problems of determinations of symmetries to the study
of one single master equation,

In this paper we restrict ourselves to the case of
plane hyperheavens (those with zero expansion, called
case I in Ref, 1), and show that the earlier work on
Killing vectors in heavens? can be extended to these
plane hyperheavens (and, therefore, to certain real
spacetimes), The spinorial techniques introduced by
Boyer and Plebatiski® and developed by Finley and
Plebahnski* are used throughout since they permit con-
siderable simplifications for the effective integration
of the equations, relative to the techniques used in
heavens, ?

To illustrate this, we also include the spinovial
derivation of the master Killing equation for heavens in
the present condensed notation, as a special case of
the more general problem considered here. Working
with these spinorial techniques, however, it is most
useful to examine carefully the role of the group of
automorphisms of the tetrad (and therefore the
metric) in the description of the results derived, We
will point out here in detail how this group, first

awork supported in part by the Fomento Educacional, A.C,
México 5, D, T., México, and by the Centro de Investigacion
y de Estudios Avanzados del Instituto Politécnico Nacional,
México 14, D, F., México,

b)On leave of absence from the University of Warsaw, Warsaw,
Poland.
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mentioned in Ref, 1, can be used to simplify greatly the
constraints on the parameters involved in the final
equations, depending upon the specific (complex)

Petrov type in question,

We recall that the existence of a Killing (vector)
structure in a space allows one to formulate a (complex)
Ernst potential® which may be used as a means not only
of describing the geometric structures of the space
itself, but also as a starting point for certain generali-
zations to more complicated spaces as well. ¢ Since, by
our technique, Killing’s equations have been essentially
integrated, we can also give an explicit form for the
associated Ernst potentials for our plane HH spaces,
which may then be used as starting points for such gen-
eralizations, While executing this program, we also
noticed that the equations for general Killing spinors
of type D(0, %) possess highly interesting properties,
It turns out that a ladder of key functions (and corre-
sponding spinorial coordinates) for heavens introduced
in Ref, 3 becomes essential in the treatment of these
spinors. (It seems very likely that a similar such
ladder exists in general HH spaces, )

1

2. THE MASTER KILLING VECTOR EQUATION

We are concerned with Killing vectors as well as
Killing spinors, all in a coordinate system adapted to a
spinorial form, It is therefore most convenient to look
at the equations that determine a (conformal) Killing
vector [K(,;,, =x¢,,] in a spinorial formalism, We
denote the Killing 1-form by an (equivalent) D(z, 3)
spinor,

K=-}g**K,j, (2.1)
where g% is the usual mapping from 1-form to D(3, 3)
spinors, ® Killing’s equations may then be written as the
nine equations

ERsAéEV(R(AKmB):O, 2.2)

which imply’ the existence of symmetric spinors £33
and £zs such that

ValK s = 0pset® + 1486 g = e psc* Py, (2.3a)
where
Qps=3€isV(a Ks)°, QAB:%ERSVR(AKSB)y (2. 3Db)

while V* =gx**V, are just the spinorial components of
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the covariant derivative, and
x=-seie" VeiKs® (2.3c¢)
is the same as in the vectorial version,

It is shown in Ref, 7 (see also Ref, 12) that the in-
tegrability conditions for these equations, in a Ricci-
flat space such as we consider here, may be written as

LRSTAZVRAQST*'zKUACURST:O, (2. 4a)
Mpsry= pAVPAC rstv—=4XCrsrvt 4ﬂv(ncvs =0,
(2. 4b)

and similar equations for the objects with dotted in-
dices, (We have also assumed y to be constant, thus
actually restricting our discussion to homothetic Killing
vectors because it is well known® 7 that otherwise we
can only pursue studies of spaces which are of type
[N]g [N] or more conformally flat, )

We recall that, in the tetrad and coordinates of Ref,
4, the metric for a plane hyperheaven is determined by
spinor coordinates p”, g3, a key function ©, and two
auxiliary functions F ¢ and Nﬁ, constant on each null

string—i, e, , functions of g3 only—such that
dsz’—'ZEA®ej, EA:_qu+QAqué:+(2)-1/2g1A’
s

ey=dgj=- (2)-1/2511/1; QAE =~ o438g + %F("ps’,

2.5)
where © must satisfy the (plane) hyperheavenly
equation®:

L(e4a%0)2 ;0,40 +od0 4+ Phage - 2 FipPasaz0
+(Fipi/18+ +pipBF; 5+ Nips =0, (2. 62)

which implies the existence of a potential A such that
2iA =20, ;+(0;050)2% + L F 0~ 4F; psdfe

+(F2p ) 3/36+ Fy sp5p%p /12 + EN%psp 5. (2. 6b)
We will also need the (spinorial) expressions for the

connections and the components of the conformal curva-
ture tensor:

Ly=0, Tp=32F';, Tp=NA+ipAFe sye;=vie;,

Cip=- (8405960)e° +3F e, =T 50e,

2,

Ciacp=10;0502010, @M
B

Cii11=0=Cry2=Cryz, Cpap==2F" j,

i_ 9 \
Coano = <F - m)VA,
where 3;=28/3p* and_H":‘E 3H/3q;, (notice also that
34 and 54=3/8¢g5 + Q*%3 5 form a dual basis for the
tangent space, ) We also commonly write Iy p=I",52e°,
In the case where F4 and N4 may be chosen to vanish,
this becomes a heavenly space (left-flat),

Having given enough notation hnd background to be
able to proceed, we will now state the results which
specify when a given plane hyperheaven will admit any
(homothetic) Killing vectors, and then exhibit explicitly
the Ernst potentials associated with any allowed ordin-
ary Killing vector (y,=0). We will give the complete
derivation in the following section,
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We find that a plane hyperheaven admits a Killing
vector, K, if and only if the key function ©, which gen-
erates the metric, satisfies the following plausible
equation for its Lie derivative,

(2.8)

where P is a third-order polynomial in the p# variables
with coefficients which are arbitrary functions of g3,

P=16; 500 000+ G4 g+ Fregp o™+ thpg+m,
2.9)

£ 40 =2w0 ~ 2a)A + P,

while ¢4 is a constant which vanishes unless the space
is left-flat, A is a prolongation of © satisfying Eq.

(2. 6) which is only needed for left-flat spaces, while
w=38xy - &% ; (with x, constant) is a function of ¢ only
which may always be chosen to be a constant by proper
choice of gauge in any particular type of space. In this
form, the Killing vector in question is determined by
oy, Xo, and the coefficients of P by the following equa-
tion (written in a coordinate basis for reasons of sim-
plicity of form):

el .
K= (aghi+ 05)5,+ @adt0 + 68 Aps+ 2xpt + ey,

(2.10)

We refer to Eq. (2, 8), with Eq. (2.9) inserted for P
and Eq, (2,10) inserted for K, as the master Killing
vector equation, which gives the explicit requirements
that a metric (for a plane HH space) must satisfy to
admit a symmetry generated by a Killing vector., This
equation then serves as a much simpler way to convey
the same information as the complete set of usual
Killing equations: 10 first-order partial differential
equations for four unknown functions of four indepen-
dent variables, This single compatibility equation can
be used to generate metrics with desired symmetries,
or the symmetries of a given metric, In general, there
are as many solutions for a Killing vector as there are
independent sets of functions «y, g, 64, and ¢® which
satisfy the master equation,

Explicit constraints on 84, ¢4, and ¢4 are created by
the integrability conditions [Eqs. (2.4)] of the original
set. The general form of these equations will be given
in Sec. 3; we give here only the forms simplified ac-
cording to the (complex) Petrov type in question, In the
case [III]® [anything], we may so choose the gauge
(see Sec. 3) that FA=1¢A Ni=0, and we have

d=vA ghb 1 =2, oy=0,
(2.11a)

et=a't- jag*, q'a ;j=-4aq, 255.5:‘]8“’

where @ and b must therefore be arbitrary homogeneous
functions (of the variables ¢4) of order +2 and - 4,
respectively. !’ In the case [N]® [anything], we may so
choose the gauge that F* =0, and we then obtain

8% =[(2x - pg)N* + £ 4]/ N 5,
6A,.5:p0:— b7 ag=0,

€' 1==-2(E~ N 1/N® ), € 5=cONp,

(2.11b)

where £ is an arbitrary function of g only. Finally, in
the case [-|® [anything]—left-flat—we may choose
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NA= 0= F'{ and we have

=zpgt+ @t €

== %Y()qja +or ji,
(2.11¢)

where v, is a new constant, and ¢, o, and ¥ are arbi-
trary functions of g,

Given an ordinary Killing vector we may then
formulate an Ernst potential which is a very useful ob-
ject, not only as a potential for the description of the
given geometry, but especially as a tool to use the
transformations of the Kinnersley group® to discover
generalizations of these plane hyperheavens, Reserving
the proofs for Sec. 3, we may here say that for plane
hyperheavens which are »nof left-flat, the most general
Ernst potentials are of the form

3E=bosp°+v, E=20;0"T-v,
. , (2.12a)
C' (‘:‘) - b€A9
while if the space is left-flat,
we have

3£ =2a,T - pydip*+7,
L =2aghi+63)a4T = 2a,T -
T:)/D(/)+poo+2001’b’

where the indicated v and 7 are functions of ¢ 3 only,
and in both cases

T:[ao(i’da/&‘

+e'pi.

A_shaNCos—¢ @y =0,

@, need not be zero and

(2. 12b)

3)+ 050400 + 36 2 + jod Foyp a0
(2.13)

3. DERIVATION OF THE MASTER EQUATION

To solve the equation ERS‘;é [Eqs. (2.2)], we first
write

K=kyE? + K0y, 8.1}
and easily calculate that
Qu:a‘,lqu, 2212:BAKA+aAkA+FAkA, (3'2)

lyy =3 3KA + VAR, dyg=0 kA - 0;KA + Fip

It is simplest to start as high up the ladder of integra-
bility conditions as possible, Using Eqs, (2. 4) we find
that equations Myy;; and Myyq, are trivially satisfied but
that ]L[MZZ and 1‘41222 tell us

0 C + 2 3 (AC Dy =0, (3.3)

Therefore, ¢ #0 only when C'V and C*' vanish—only
in a left-flat {vacuum) space. We must therefore split
the discussion into two cases, We first assume £, #0.
Since the space is left-flat, we may choose a tetrad so
that T45=0; i.e., F*=0=N* Then the equations
Lgsy® just say that lzs must be constant. In this nota-
tion, we have

211(:(2) — Oy

E A8 =a%e® —0, 1 =20,=0k4, (3.4)
which says that

ki==-agpit 83, (3.5)
where 0, is a function of qB only. Then

fy= oK%+ 3 Ped { = kA A= 20 {3.6)
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tells us that k“ A= — o4 , 4 must be a constant, p,, and also
1mphes the ex1stence of a scalar T such that

K4 :_aAT+(EPo‘2Xo)/’ . (8.7)

With these forms for both & and K4, we find that E,,*2
becomes just 3“3® acting on something, which gives us
a form for T,

SPabstepa,

T=k30% - 30,0 + b ® (3.8)

where we have written

6= Lot + o4,

where ¢* and @ are arbitrary functmns of g3 only. We
may now insert all this into E,*® which says that

=540 T+ (py— 4x)Q* P+ [285T + (py — 4x)p2la®s*a®e
=0,

By commutin 6 and 88 we easily cause it to take the
form of a‘AU )= 0 and thereby imply the existence of
7 and &4 such that

2024 (pgas - 3)0] + by ph + &4,

where the y, that enters must be a constant since ¢y
=5 ;K* = y;. Al this point, we note that 3;5* =35%33,
while 555% =0, Using Egs. (3.8) and (3.9), as ap-
propriate, the first fact tells us that €” ;=- 1y, whlle
the second says that £A ,i=0. This guarantees that ¢4
and KA must have the forms given in Eq, (2,11c). We
may then insert Eq. (3. 8) into Eq. (3.9). This must be
sn;nphﬁed by the elimination of all the terms
(@42%0)2%5 30 which appear. To do this we note that
this term is skew-symmetric on the free indices, and
obtain, using the heavenly equation (2, 6a):

(0433013 g0 = - seA%(2%0%0)0 50 30 =40 %0 ;.

34T = (3pg— 3.9)

Also we use Eg, {2, 8b) to reduce certain complicated
coefficients of a, to merely zaé;\, The equation is then
rewritten as the vanishing of ” on something; this im-
plies the existence of y—a function of ¢35 only—and gives
us the master equation, !

Now in the case that ay=0, so that at least one of
C'D or C'® may be nonzero, we still have that k; =6}
[Eq. (3.5) with 0,=0].

However, Eq., (3.3)— . yp—then insists that
(4c ) 1=0, or that there is a b such that

FB,éG */)’ (3.10)

Equation LmA then becomes (£, + by “ =0, Insertion of
th~ into the definition of ¢, and a choice of constant so
that €9+ b=~ 2y,, gives us a first-order equation,
—b=06% 1+ Flo;
= (F8 p i

+(FE ED 52 (3.11)

which determines it in terms of an arbitrary function of
one variable as soon as Fj; is known, When a specific
Petrov type is decided we can say more about it.

We also know €, in terms of 33K°; in particular, the
equation is - 8,11(’1:!) +4y4, which gives us

KA =T 3(b + ay)pt (3.12)
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in terms of some scalar function, 7. Inserting this into
1E AP = KD 4 5 ApD g, a‘AQB’S, it reduces to the
form 84U®) = 0. where again UE is used as a generic
symbol, giving us

T=0g0% + 365§ + 16RFYp ppy+efpp, (3.13)

where a possible term mdependent of p* was absorbed
into 7. Equation 3Ej B_5UAg® 4 vidpd _ogsp5qAk
may now be rewritten into the standard form: 34U®) =0.
This gives us a determination of

s3T=TF3_ L(b+ ay,)psosote + (b + 4y,)o%0

+ v Bodpg B i, @.14)

Agaln we aj Jpply the zero operators 6“8; ~ am‘l + FAa,;
and § 5,; V434 to the two equations for 7. After some-
what lengthy calculations one determines three new con-
straints on the coefficients, The first operator insists
that

2y=NAg;~et ;. (3.15)
The second one requires
- Pl =ein;, (3.16)
Iy it 2vF;+ (b+4x)IN; ~ Fé'ée_j
+2N%35 4, - 2(N g0, B+ FAN =0, (3.17)

It is clear from Eq, (3,15) that y is now determined
while Eq. (3.16) puts a solvable constraint on ¢* with
many solutions. Inserting the expression for y into Eq.
(3.17), the latter becomes

€ 5a e BF i+ F® s i +2(Njos)y®

- 2N%65 5 =4xN;, (3.18)

whose solution we will discuss with respect to the dif-
ferent Petrov types. However, useful pieces of it can
still be separated off, We multiply by 5* and use the
constraint on 6% [Eqs, (3.10) and (3.11)]. This results
in

4X0NA5A-

[@N%65+e? 5064 + bet] ;= (3.19)

Second, operating with 3/3¢ ; we also obtain another

corollary equation
i+ FAP AT 2N’i,,;i;(5‘§

— 4X0NA,;1 :0_

2F§' ée
+4N4 o8

+6F

,;+2NA63, 34 (3.20)
These constraints are necessary and sufficient for us to
rewrite Eq. (3,14) as the gradient of something, which
gives us the master equation. Once again it ig neces-
sary to eliminate terms of the form (343%9)2°330 by
the use of the hyperheavenly equation,

At this point, we wish to use the automorphisms of
the tetrad to simplify the constraint equations as much
as possible. We recall? that the variables ¢; are just
labels for different members of the two-dimensional
congruence of {plane) null 2-surfaces which the space
possesses. Therefore, transformations to new labels
g’ % which do not affect the form (in terms of the new
variables) of the tetrad, but simplify relevant equa-
tions, are very useful. In Ref, 4 we spell these out in
terms of

dq's=Ty*dq;, p'%=T"135%p4+0'% 3.21)
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where T,:,A and 0’% are independent sets of functions of
g only. In the type [I)® [anything], C¥' = ~FA,,; #0,
Under these transformations it acquires a multiplica-
tive factor of T-! (the inverse of the determinant of the
matrix T3*). We may therefore choose T to make it
any constant nonzero value, We choose, therefore C'*
=-1, This implies FA= qu+£ But we also have that

o EpA L Ty R, (3.22)

1t is therefore sufficient to maintain T=1 and to pick
gt such that q'*dg’ s - g*dq ;= 2d£ in order to insure
that F#=14"® only. We may therefore assume that this
has already been done. But, using the transformation
properties of I'y;, we find that

‘-..izAls,Rl Ry 1.8,k
N E=T T BN = S g0t GF R+ 5075 F &,

(3.23)

Restricting ourselves now to transformations with Tt
= 6" #, and setting 2 as any solution of the equation
a*n, ; +4k 2NA ;=0, we find that a choice of o’F

= hq + 920 4+ 9N guarantees that N'¥=0, Therefore,
we may always assume, 1n1t1a11 X restr1ct1ng ourselves
to a left-[II] space, that F4=ig*, NA=0. (There is
even still some freedom left in the gauge corresponding
to the 0’" generated by % being some homogeneous func-
tion of order - 4,)

Still remaining in a left-[IIl] space, we may now look

t our constraint equations. Equation (3.10) gives us
o=t 4 , which implies that 6"‘,,; 0. Equation (3, 11)
then becomes g*b 41 =2b, which determines b as a homo-
geneous function!? of order 2, therefore still having
the freedom of one arbitrary function of one variable,
Using @=¢* 41, Eq. (3.20) becomes g%a;=- 4a, which
says a must be a homogeneous function of order -~ 4.
Picking « as an arbitrary such function, Eq. (3.18)
gives us a form for e* = a4 = lag?,

In the case of Petrov type [N]® [anything]—left-[N]—
we surely have FA,,;:O, which implies that F* is a
gradient, F4='4  Equation (3.22) reduces to

R (r- Ty ?

so that, if we choose InT=f, then f'=0, We may
therefore assume initially that FA= 0, restricting our-
selves to those transformations that have constant 7.
(This reduces the hyperheavenly equation to a much
more manageable form. ) Equations (3,10) and (3, 11)
then tell us that ~ b=p,, a constant, and 54 =3 p,q*
+¢'”, for some ¢, an arbitrary function of g# only.
However, Eq. (3.18) reduces to

2%+ (py = 2x)NA + (Ga + NP0y 4 =0,
where n:Né, . This tells us of the existence of some
scalar ¢ such that Eqs, (2,11b) are determined.

We also note that, for plane hyperheavens with a,=0,
the transformation equations for 64 and ¢4 are easily
determined to be

&
di=T"1;%6"4,

(3.29)

€A — T§A[€'s - ZXDG,S +0"R6’{g' § +0IS, Rélk]'
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These transformations can be used to eliminate e“i if
desired. Here we maintain generality, however, since,
starting with some given symmetry, this particular
gauge may be difficult to insure,

Before deriving the Ernst potentials associated with
these Killing vectors, it is probably useful to briefly

review their connection to quadratic Killing structures,
presented in detail in Ref, 12, It is well known'? that
the structure consisting of K5, €45, 2%, and V44y is
closed under differentiation, (The components of the
Riemann tensor are also needed, ) However, Ref, 12
looks at all the (quadratic) objects in the direct product
of this structure with itself, decomposes it into objects
irreducible under SL(2,C), and calculates the ap-
propriate closure relations. Two of the most important
such irreducible objects are the two 1-forms G and G
defined by

G=—10,5K%:8"°, C=-10;3K.5¢% (3. 25)

It is shown that, in vacuum with y,=0, both are closed
forms. We may therefore infer, in some appropriate
neighborhood, the existence of some potentials £, g
such that d¢& =G, d £ =G, We also have the useful
relation, K*K, + £ + 3£ equals a constant, which may
always be chosen zero, The equation for *d*G then be-
comes the usual nonlinear equation which ¢ is required
to satisfy,

Using d & :egﬁéf - Eéagg, we obtain, for our
tetrad,

1o5E =0y K5 Upks, 357 =tpk? - 1,K?,
_ L (3. 26)
205 =-agkt, BOE=- MKy

For left-flat spaces, we use the forms derived above
and easily find that 3 £ = 20,7 - poé,;p" + 7, where 7 is
a function of g only. Inserting this into the equation
for 5525 and using the known form of 557 we easily
find the form given for 7 in Eq, {(2.12p). Using - 052
=293K 4, =2833;T and the form for #*, the equations
for E may be determined by the same method, or from
the equation K"K, + 35 + 3 £ =0, The case of other
plane hyperheavens proceeds similarly. We note that
041=0, Lip==Db, Loy==D ;p" +2N463-¢* 3 from
which 3¢ =bbgp® +v is trivial—v a function of g only,
Using Egs, (3.7) and (3. 8) for K4 and T, we may
rewrite

K4 =05Q%% = pgb™ A — 25 p* —€*, (3.27)
which, inserted into the equation for 305¢ with x, =0,
gives the equation for v»# in Eq. (2,12a), However,
again with y, =0, Eq. (3.19) assures us that this equa-
tion always has a solution, For a left-[IIT] spagce Eqgs.
(2. 11a) inserted into Eq. (3,19) tell us that v»*
=b(a* - 3ag?) + ab' = (aby * - 3abg*, from which we
see that v - ab is a homogeneous function of order 0
while, of course, ab is homogeneous of order - 2, For
a left-[N] space, Eq. (2.11b) for 54 and Eq. (3.19) with
xo =0 give us the existence of v as well as an explicit
relation with e*,

pet + 26t +rd=o,
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4. KILLING SPINORS

We are here interested in Killing spinors of type
D(0,k), k=3%,1,%,+++. For simplicity most of the dis-
cussion will be restricted to left-flat spaces where it
is easier to see the relevant structures, We note that
such a Killing spinor, L,...x satisfies’

. » .
V(RTLA...}():O or Vg LA...K:ER(AQ TB--.K)- (4- 1)
In pure vacuum—the Ricci tensor vanishes—the in-
tegrability conditions become
b s
Vi 0 gy =0, LycaeersC¥pyiy=0 (4.2)

so that ¢ 7., is also a Killing spinor.

Using our standard tetrad in a left-flat space— F4=0
=N4_the operator VRT acting on objects with all undot-
ted indices gives the same result as aR’ =-V2(6LaT
+ 612;?5T). We label the various components of L,...x by
L;, where j=0,1, ..., 2k, indicates how many of the
indices have the value 2; i.e., L,=1Ly...1, L,
=Lj.citpyee oy Lgy=Ly...5. The determining equations
(4.1) may then be written as the set of 2% +2 equations

@k +1-))2 Ly ==jd Loy, §=0,...,2k+1, (4.3)

We note that the first of these equations merely insists
that L, is independent of p* so that there are plenty of
solutions. If we pick L, as a—some specific function

of ¢ 3—the next equation is then #97L (,=- i 7,

determining

Ly=- (@ Tpp+b)/2k, 4. 4)

where b is some new function of g3 only,

We now note that the existence of a complete solution
starting with a given choice of such an @ and b is
guaranteed: Given a particular sequence up to and includ-
ing L, for some j= 1, the condition for the existence
of L,y is seen to be 3387L ;,=0, But this is just the
vanishing of 873 4L ;, =~ [ji/(2k +j - 1)8T6 4L ;_;, = 0.
Therefore, the existence of L ;. is assured. More-
over, the last equation is just 3% Z,,, =0, but the
above argument tells us that §357L ,, =0. Therefore,
there exists N such that 0=587L ,,, =27V, which gives
us a final constraint on the manifold in the form of N
=flgs), where N is clearly dependent on 2% - 1 previous-
ly determined functions of ¢ § only— “constants of the
integration procedure,”—and the key function ©, It is
quite interesting that, in the process of determining N,
we discover a hierarchy of key functions associated
with ©, and determined by it via the heavenly equation
and its various prolongations, This hierarchy was first
discovered by Boyer and Plebarski. * Here we will give
a brief review of the relevant notation and explain how
it enters into the calculation of our Killing spinors.

We start with the function © itself which, via Egs.

(2. 6), determines the existence of A, a “first integral
of the heavenly equation.” Thinking of © as a function

of p* and g3, we may, following Ref, 3, give names to

the partial derivatives of © ' by writing
de:r,;dq“‘+s,;dp‘4, $4=040, ;=0 ji. (4.5)

Thinking of the new quantities as new variables in an
enlarged space and looking for other Pfaffians integra-
ble when restricted to the integral variety determined
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by Eq. (4.5), they found A such that

San = 13t +viaph + s gas?, «.6)

1 1 B 1 a4 LoooB
0N =7 T as80587, 2A f=1l1+ 35557 4,

where the 3 are new spinors defined by this equation,
[It can be checked that this is the same A determined by
Eq. (2.6b). ] This sequence is found to continue, each
time the new one being determined by the old spinors
and introducing one new spinor—new variables in the
prolongation space. The next two are determined by

d= :ngdq"j+[,;dpA.+ ?f[ids"j, ' @
dr =vdg” +uzdp® + tdp* + v jdrt,

By introducing some labels we can easily write the
entire sequence in a compact form, We defme Qigy,y
b 1

2=2,3,. -,and\l/m,7— 3,7+ 3,3
_ A A
Qgy=0, v =04 v, =t
1 A _ LA i
Qg =20, Vi, =p", ‘1‘<9/2>—“
Q(4):E, (4“ 8)
A _ LA S A A
Qi =T, ¥Gm=s", ¥iim,=0v",
A
Wigrny =%, *-
Then we find that for { =2m or 2m +1, respectively,
med /2 i
damy= 27 Vimpid¥l,,
jecl /2 @.9)
nel/t i L1 A
ARy = _21/2 VY mi-n A T 2 (at 125 A0 ¥ st 7230
j=-

Next we note the fact that is especially important to us
about this hierarchy of new spinors, It is checked by
straightforward but tedious calculation that the new
spinors are related to the old ones in a very simple
hierarchical structure,

A

¢ ‘I’é(j):aA‘I’BuAn F==%,5,%,. (4.10)

Then, noting that the integrations for L, and L,
already performed were beginning to introduce poly-
nomials in p*, we define a sequence of functions of q3

only,
Ay 1Ay =a, a(i)Eb’ U, i:0,1,2s3"'
Am=0, m=1,2,3, (@.11).
and, thereby, some special polynomials .
2 A .
EZ) pagy U eipg eeapy
£=0,1,2,¢+-, 4.12)

with =0, m=1,2,3,---,

We may then easily derive the following useful re-
cursion relations:

aApz =Py A’
6'&/92 = Py, éaAsé + P
= 3A[ Povy + Poy, ésé] - /911.2"&535-
The current notation is very condensed since, for ex-
ample, Eq. (4.10) with j :§ already includes some

ten terms when rewritten in terms of © and A, How-
ever, it is just what is needed to integrate the Killing

(4.13)
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spinor equations (4. 3), using the two sets of recursion
relations given in Eqs. (4.10) and (4, 13). Since the
method is now very straightforward, we simply give
one example of a particular derivation and then general
results, However, the actual form of the results is
rather complicated so that we give, in addition to a gen-
eral form, several specific examples, Given the equa-
tions for a D(0, k) Killing spinor, the solution to Eqgs.
(4, 3) is determined by giving all L,,, m= .. 2k,
and the final constraint equation, We find, where (,f,)
are the usual binomial coefficients, that

2k :
+Lgy=Py=aq, ‘( 1>L<1)=/91'—‘a<0>, ppttay,,

<2§>L(2) =Pyt Py 154, (4.14)

2% ; ;
- (3 >L<3):/93+/)1,ASA + Py, 4.

Using Eq. (4.3) with £ =4, we have
2k - 3)5511(4) =-45 éL(s)
2%k -1, . o
=4<3 ) (85, + pi,jﬁéSA (880, )5
.. 3 .
+ /90,,4'687’A + (370, 1),
or, using our recursion relations,
. ok -1 . . o o s
8%L = <4 > {8 Py + P, 588 = Py s i+ Py satrt
+ Py, i BS/&"’po,Afc'S/;aésc.*“po,Aaét'a
+ P, 4 é”'&}
-, . . .
:<2k> {22 [Pyt Py ssh + Py art + g 4
(3 pi A)TA+/90 '8 A}

+ 3P, sessC] -

from which we have that
2k -1 . .
Ly :< 4> [Pyt P, as™+ Py art

+ P, it" + 2 Py, 25s%s %,

Continuing in this way we acquire the general form

(4.15)

2
{2 /23 1 22n
=P+ = 2 Prouizn dgeeed
1 n
n=1 . My sony m,=0

XU 2y (4.16)

where [£/2] means the greatest integer in (/2 and M
=¥i.1";. This is the form which is given naturally by
the method of solving the equations with ¢; and p® as
the independent variables, However, the p” are just
\11(1 /2y« Therefore, we can rewrite Eq, (4.16) in the
simpler form,

2k L1
(- 1)£<Q>L(z)=a(z) + E !

Ay
* \11(3/24'11”)3

Lan .
C L A i
x 2 (a<z.u-n).A1-nA,,‘I’ %1,2”,,1)" o ‘1’(1"/2+m,,>)-
Mis 0oor My
=0

4.17)
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Next, we recall that the last of Eqs, (4, 3) says that
5°L (3,5 =0, In the formulation given above, this con-
straint can be rewritten to simply say that 0 =N - f(g3)
= M,,1). This, then, becomes the master constraint
equation—connecting the components a;, and the func-
tions of ©—which determines the existence of any
particular Killing spinor in our left-flat space, and is
the analog of our master equation for Killing vectors,
In particular, note that the existence of a D(0, 1) Killing
spinor implies (in vacuum) a D(%, 3) Killing spinor by
Eqs. (4.2). Therefore, the conditions for existence of
a D(0,1) Killing spinor should be equivalent or a subset
of the condition for existence of a Killing vector—a
D(3}, 3) Killing spinor, But the D(0,1) condition, for
L5, would be that M, =0, Comparing the form of L,
given by Eq, (4.14) with the master Killing vector
equation, Egs, (2.8) and (2,9), we see that it is indeed
a subcase of Eq. (2, 9) corresponding to ay=0=p;= X,
= Y0e

The simplest case is just that of a D(0, 3) Killing
spinor in which the master equation is just

M@y=0 or ag ;3*%@ =3ay ;5p%p"+ a;, ip* + a3 =Py
(4.18)

We quicklg see that this implies that 0=ay ;3%9°5%"6
:aM;CM ’5_ For a, nonconstant, this implies that g, i
determines a quadruply degenerate Debever—Penrose
vector and insures that the space is of type [IO, N or—|
® [N].

We also note that a constant D(0, 2) Killing spinor
always exists in a left-flat space, for any 2. It is of the
form L, =a;,, where all of the a;, are constant. (The
constraint equation is automatically satisfied. )

5. CONCLUSIONS

The resulis presented here show a rather amazing
feature of the symmetries of plane hyperheavens, Their
description is simpler than the corresponding descrip-
tion of pure heavens since the troublesome constant o,
(from heavens) vanishes in hyperheavens, thereby
eliminating the necessity of introducing the higher key
function A. The simple, succinct form of the master
equation in plane hyperheavens makes it clear that an
explicit derivation of the function © corresponding tc a
spacetime with any particular set of desired symmetries
should not be particularly difficult, It is therefore clear
that the results of this paper, among other things, can
be considered as the key to the study of all those gen-
eralized Robinson—Trautman solutions which are plane
from both sides—therefore, nontwisting and nonexpand-
ing—but with these two sides not necessarily being
complex conjugates of each other,

Also we have found explicit forms for master equa-
tions determining the existence of D(0, k) Killing spinors
in left-flat spaces, as well as explicit forms for all the
components, These equations needed the introduction of
a hierarchy of key functions—a sequence of “higher
integrals” of the heavenly equation—and an associated
hierarchy of spinors which allow us to represent con-
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cisely the components of our Killing spinors, The
geometrical meaning of an arbitrary Killing spinor is
still unclear, as is the full meaning of the process of
prolongation of the differential structure of a space-
time. We have surely shown, however, that the two are
closely connected, which we hope will assist in the
better understanding of both,

We have not attempted here to discuss applications of
this formalism to any particular case, For pure
heavens several interesting examples were already
given in Ref, 2, Similar procedures can easily be done
for these plane hyperheavens; however, these will be
published later in a separate study.
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Second countable locally compact representation groups for the Poincaré group (resp. for the Galilei
group) and for some of its subgroups are constructed in the “quantum mechanical case,” i.e., when time
and space-time inversions are assumed to be represented by antiunitary operators. The question of their

uniqueness up to topological group isomorphisms is investigated.

I. INTRODUCTION

The role of ISL(2, C) [the inhomogeneous SL(2,C)] in
relativistic quantum mechanics is hardly overestimat-
ed: Its continuous unitary representations (CU-reps) on
separable complex Hilbert spaces are needed in order
to describe the relativistic space—time transformations
of quantum mechanical states, However, it should not
be forgotten that the relevant space-time symmetry
group in this context is P, the neutral component of
the Poincaré group P, and not ISL(2, C) which occurs
only as a representation group! (hence, essentially,
as a mathematical device) in the theory of continuous
unitary projective representations (CUP-reps) of P,.

In other words, the CUP-reps of Py are “linearized” by
CU-reps of ISL(2, C),

In the present paper, we also consider space and time
inversions and apply the results of Ref, 1 to determine
representation groups for P and for its subgroups P’
(the orthochronous Poincaré group), P, (the proper
Poincaré group), P.'=P,U P! (the orthochorous
Poincaré group) in the “quantum mechanical case,”
namely, when time and space—~time inversions are as-
sumed to be represented by antiunitary operatorsf If
G is any one of the groups Py, P', P,, P.!, P (that we
call globally the Poincaré groups), a “quantum
mechanical” representation group for G will be called
a quantum mechanical G-group, Our “quantum mechani-
cal P-group” is not the “quantum mechanical Poincaré
group” considered sometimes in the literature, ® Its
meaning for G is the same as that of ISL(2, C) for P,.

In particular, all “guantum mechanical” CUAP-reps

of P can be obtained from (ordinary) CUA-reps of one
quantum mechanical P-group (Ref, 1, Proposition 1)
instead of using eight*® or four® 7 nonisomorphic groups
as it is customary, We also consider the Galilei groups
G,, G', G,, G}, G, i.e., the nonrelativistic space—
time transformation groups corresponding to the
Poincaré groups, and study their “quantum mechanical”
second countable locally compact representation groups
(again called the quantum mechanical G-groups, where
G now runs through the Galilei groups)., We show that,
if G belongs to the Poincaré or Galilei groups and is
different from P', P, G', and G, it admits a unique
quantum mechanical G-group up to topological group
isomorphisms,

z"Supported by the Deutsche Forschungsgemeinschaft,
"Present address: Institut de Physique, Université de
Neuchitel, CH-2000 Neuchitel (Switzerland).
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The paper is organized as follows, In Sec, II, the
relevant cohomology groups are determined and cor-
responding selectors are chosen. The quantum
mechanical groups are constructed in Sec, III and the
question of their uniqueness is investigated. For the
sake of completeness, we also treat the known cases of
P, %° and Gy, *" Two results of more general character
needed in the present paper, one concerning co-
homology groups of degree 2 of semidirect products of
groups and the other the uniqueness of representation
groups, are given in the appendices,

Results, conventions, terminology, and the notation
of Ref. 1 are used throughout the paper.

{l. THE COHOMOLOGY GROUPS

Our goal is now to determine the cohomology groups
H%(G,U(1),,), where G runs through the Poincaré
groups and the Galilei groups and N is the biggest sub-
group of G which does not include time and space—time
inversions. Meanwhile, for each G, we choose a
(G, N)s-selector s and a second countable locally com-
pact group topology on H3(G,U(l)s,) such that evi,, s is
continuous for all g,g’ in G when s (H%) is equipped with
the topology transported via s and s(H%) with the cor-
responding compact open one,

A. The Poincaré groups

The elements of P are of the form (/,A), where f is a
space—time translation and A belongs to the Lorentz
group L. As usual, Greek (resp. Latin) indices are
space—time (resp. space) indices and we follow the
summation convention on repeated indices, We denote
by V the subgroup {e,?,e’,2'} of L (isomorphic to the
Klein 4-group), where e=ey, ¢ is the space inversion,
e’ is the time inversion, and e’ is the space—time in-
version, Then P (resp, P', resp. P,, resp, P)'}is a
topological semidirect product of V (resp. of V=1{e,e},
resp, of V'={e,e’}, resp. of V' ={e,e’}) by P, and N is
the subgroup P' (resp. P’, resp. P;, resp. P;) of P,

(A.1) Py: It is well known?® that
H5(Py, U(l)) = Gy,

where C, is any cyclic group of order 2, so that we
can identify the group H%(P,, U(1),) with the (multiplica-
tive) group {1, - 1}.

Now let Pr, be the covering projection of SL(2,C) onto
the neutral component Ly of L, and let 0 be the normal-
ized locally continuous Borel section associated with
Py, defined by taking limits of
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oMY= (1/MYA 7o+ (Mg + A% — ey AR T,),  (A520),
where
M2 =4 - Tr(A% + (TrA)? — ie®*A° A%,

and the square root M* — M in C is chosen to be Borel
in C and the principal branch in the complement of the
negative real half-line [cf. Ref, 4, (1,8)]. Here, 7 is
the unit 2 X2 matrix and 7, (1 <j <3) are the Pauli
matrices, There is then a nontrivial element y, of
Z%(P,, U(1),) with values in {1, - 1} such that

pol(t, M), (¢, A Te=0(A)o (A Yo (AA")

for all (f,A), (¢’,A’) in Py, and we define the (Py)a-
selector s by s(~ 1)= g,. The chosen topology on

H%(Pg, U(1),) is obviously the discrete one, We identify
the groups s(H%) and {1, - 1}, so that then ev®= i,
where i, is considered here as a mapping of Py XP, into
{1,- 1}, This convention will be tacitly followed here-
after for all cocycles with values in {1, -1},

(I 1)

(A.2) P': If A c Ly and A =2AZ, then A% =A", A',
==A%, Niy==N,, and A}, =A% for 1<j k,1<3, It
follows that o(e Ae) =o(A)*"! and therefore we have

12(e) g = tos (O, 2)

where (i, is as in (A, 1) and the notation of Ref, 11,
Sec. 4 has been used, Furthermore, H*(V,U(1)y) is
trivial because

Z2(V, U(1)y) = BA(V,U(1))) = U(1).

Since Z!(P,, U(1),) is trivial and so, by Proposition 4
(see Appendix A),

HY (P!, U)) ~H5(Py, U(1)) " xHA(V, U(1)y),

we again have
Hy(P', U(1)) ~C,

by reason of (IL, 2), As in (A, 1), we identify HL(P',U1)))
and s (H’ ) with {1, - 1}, we put the discrete topology on
these groups, and we define the (P')z-selector s by
s(-1)=p, where (Ref, 11, Lemma 2)

B((t, Av), (¢, A7) = py((£,A), (7, 0A"))
for all ¢,A), (¢/,A’) in Py and all v,v’ in T—/, with p,
given by (II.1). Then ev¥=4,

(A,3) P,: As e’Ae’=A for all A€ L, we have
(<I>p0) (e’ )uo_ Lo when iy is given by (I, 1). Moreover,
H:(V,U(l),,) = C, because 22V, U(1)s,)) ~C; and the
unique 2-coboundary is the trivial one, Proceedmg as
in (A, 2), we see that

H?B(Pvn U(l)opo) :C2XC29

we identify it with {1, - 1}* and equip it with the dis-

crete topology. The (P,,Py)s- selector s is defined by

choosing s(- 1,1)=p{ and s(1,-1)=pj, where
it Av), (', A'0')) = e, A), (7, A)),

1 ifv=v'=¢e’
otherwise

w3t Av), (¢, A"0')) = {

for all (,A), (#',A’) in Py and all v,v’ in V', with g
given by (I 1), We identify the groups s (H> ) and
{1,- 1} so that, if the mapping

i’r:p,xp,~{1,-1}F
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is defined by p’= (i, u3), then evs=p’,

(A.4) P.: Since, for each A c Ly,
as HY(V', Ul), ) =Cqy, we have

HZB(P+-’U(1)0P0) =CyXCy.

e’Ae’=eAe, and

Now we can adopt the result of (A, 3), writing pi
(resp, u') instead of uf(resp. of p’) (=1,2), taking
v,v’ in ¥V, and changing the definition of i to

“{((t’Av), (t',A'U’)): “'()((t)A)’ (t',’UA'U))o

{A.5) P: Taking account of the previous results, we
have by Proposition 4

Hy(P, U(1)gp0) *Cy XCy X Cy

because H:(V, U(1)g) *Co X Cy [cf., for example, (Ref,
6, Lemma 5. 3)]. We identify the groups H%(P, U(L)opr)s
s(H ), and {1, - 1}%, equip them with the discrete
topology, and define the (P, P')5- selector s by choosing
s(-1,1,1)=pq, s(1,-1,1)=py, s@,1,-1)=p;, where

(¢, Av), (', A0")
= ug (¢, A), (', uA V),
wa((t, AV, &', A"0"))
:{- 1 if @,v")e{l,e), e,
1

otherwise,
wa((t, Av), @, Av"))
_ {— 1 if (0,0 e{(e’,?), ',2), €, €2},

e,)? @,’E)’ (E” e')}?

“}1  otherwise

for all (¢, A), (#’,A’) in Py and all v,v’ in V, with i,
given by (IL 1) [cf. Ref. 6, Lemma 5.3, Table (ii)].
It follows that ev®= u, where the 2-cocycle

p:pxp—{1,-1P
is defined by = (i, g, B3).

B. The Galilei groups

We identify as usual every element g of the Galilei
group G with a 5-tuple (c,, % t,, V,, O,), where ¢, {1, - 1},
"R, t,cR’, v,eR? O,¢ O(3,R) are, respectively,
the time inversion, time translation, space translation,
Galilean boost, and orthogonal transformation param-
eters. If the subgroups V, V, V’, and V' of G are de-
fined as in the case of the Poincaré group, we have
that the Galilei groups are topological semidirect prod-
ucts of these subgroups by G; exactly as in Sec, II A with
the symbol “G” instead of “P,”

(B.1) Gy: A well-known result of Bargmann (Ref. 9,
6f, 6g) tells us that

H%(Gy, T =RXC,

and that, for each » € R, we have an element ug of
Z%(Gy, U(1)y) given by pf(g,g") = expl-ivny(g,8’)), where
[Ref. 9, (6.30a)]

,)(g’g,):t -0 v l—to(%vzc‘*‘v <0 V'),

the dot denoting the scalar product on R®, If the real
numbers » and 7/ are different, then [uf]#[ul]. There
also exists an element p; of Z";(Go, U(1);) with values in
{1, - 1} defined by
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Lo(g, 8Ty =0(0,)0(0,)0(0,0,)1,

where 0 is as in (A, 1) after an obvious identification,
and one easily checks that [g,]#{p]] for all e R, We
identify H%(G,, U(1);) with Rx{1, - 1} by means of the
given group isomorphism and endow H%(Gy, U (1),) with
the product of the canonical topology of R and the dis-
crete one on {1, - 1}, The (G,),-selector s such that
s(r,1)=uf (* < R) and s(0, — 1) = i, makes ev{,, g con-
tinuous for all g,g’ in G, [provided the topologies on
s(H%) and s(H) are defined as stated above], The
topological groups s(H#%) and Rx{1,~ 1} are then identi-
fied in an obvious way, so that we have ev®= (n, L).

(B.2) G": For each gc GO, we have
e Ogle=(1,¢ Ve, 0,),

so that I§(§)uou0=uou0 for all ’}’ER, where ul, i1, are
as in (B, 1). Since Z}(G,, U(1),) =R, it follows from
Proposition A that [cf. (A.2)]

H(G', U(1)) =R XCy,

With the identification and the topology as in (B.1), we
choose the (G') g-selector s such that s(»,1)=u" (¥ = R),
$(0,-1)=p, where

e(l, g’ ’ :9

K (gv,g'v") = uf(g,vg"v),

plgv,gv’)=polg,8’)
for all g,¢g’ in G, and all_v,v' in V. Now we identify the
topological groups s(H%) and RXx{1,- 1} and obtain ev*®
=(n, 1}, The meaning of 7 (and of 5,7, 7 in the follow-
ing) should be clear,

(B. 3) G,: Since

E'(l,tf,,t,,v O,)e’:(l, “ b, Ve, a,)

for all g« Gy, we have, for each 7R,

(Bay)s @) fito = Khikee (IL 3)

Therefore,
HZB(Gn U‘(l)ouo) =R XCZ XC2’

and we identify it with Rx{l, - 1}* endowing it then with
the product of the canonical topology of R and the dis-
crete one on {1, - 1}%, The (G,, Gy)-selector s is defined
by s(r,1,1)=pu’" (reR), s(0,-1,1)=p}, s(0,1,~1)
—uz, Where L’ is defined as [i" but with v,v" in V’ and
hi (6=1,2) as in (A, 3) with g, g’ in Gy mstead of (t,A),
(t',A’) in Py, The topological groups s (H%) and
R><{1 - 17 are identified, and so we have ev®=
with 0= (%], i3).

(B. 4) G!!: Here we have
€ (1: g’ 23 Ves Oz)e' = (19 - tg: t'y = Ves O()

for all g€ Gy, hence (IL 3) is also satisfied with e’
instead of e’, It follows that

H%(G}!, U(l)"Go) 2RXCyXCy,
and we can proceed as in (A, 4) with (B, 3) instead of
(A.3) and g,¢’ in G, instead of {t,A), (#',A’) in P,
Notice that the definition of 1{ is the same as that of
ii.
(B. 5) G: In analogy with (A, 5), we have

(77 “')’
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H(G, U(l)ggs) SRXCy X Cy X Cy,

We identify H%(G, U(1)° ,) with Rx{1, - 1}, equip it with
the product of the canomcal topology of R and the dis-
crete one on {1, - 1}%, and define the (G, G')5-selector s
by choosing s(»,1,1,1)=p" (r€R), s(0,~1,1,1)= By
s(0,1,-1,1)=py, s(0,1,1,—-1)=p,, whereu is as u”
but with v,v’ in V,

n1(gv,gv’')=1o(g,8")
for all g,g’ in Gy and all v,v’ in V, and py, ps are as in
(A, 5) with g,g’ in G; instead of (f, A), (#',A’) in P,
Then the topological groups s(H%) and Rx{1,-1}® are
identified, and we have ev®=(n, 1), with p= (i, tg, K3).

I1l. THE REPRESENTATION GROUPS

In this section, we shall study the representation
groups s(H% )w ev®G for (G, N), with the s-topology,
where G, N, and s are as in the previous section, We
shall follow the order of Sec. II, using the same nota-
tion, Notice that H%(G, R, ) is trivial if G
e{p,, P',P,,P., P} and 1somorphlc to (the additive
group of) Rif Ge{Gy, G, G,,G,., G} because H(F,R,,)
is trivial for every finite group F (Ref. 12, Chap. 1V,
Corollary 5. 4).

A. The Poincaré groups
We recall that
ISL(2, C) =R* % ,8L(2, C),

where the topological operation @ of SL(2,C) on R! is
defined by

&(A)x =TYATK)IA*) (xcRY
via the group isomorphlsm

Ex

k=0

T:x= (xxxx

of R? onto the (additive) group of all 2x2 Hermitian
matrices. The operation ¢ of V on ISL(2,C) such that,
for each (f,A)e BL(2,C),

o), A)=(t;, A
(e (t, A) = (b, A*Y),

*-1),

where = (£, t), f;=(" ~t), and ¢,,= (- £, t), is topologi-
cal and we have the topological semidirect product
ISL(2 C)x V. We shall put @l V= @, 1V =

@l V= @’ and tacitly consider the semldlrect products
relative to these operations as topological,

(A.1) Py: The representation group
Py={1, - 1}P,

for P, is unique up to topological group isomorphisms
by Proposition B (see Appendix B): it is THE quantum
mechanical Py-group, As mentioned in the Introduction,
ISL(2,C) is a representation group for P,: Indeed the
mapping

(&, &, A~ ¢, t0(A)) (ge{l,-1}; (¢,A) e Py)
is a topological group isomorphism of 130 onto ISL(2, C),
(A.2) P'; We have a representation group
P'D—{1, - 1},5p

U. Cattaneo 769



for P', i.e., a quantum mechanical P'-group, and a
topological group isomorphism

(&, ¢, Av))~ (¢, t0(A)), ) (teil,-1}(,A)ePyve V)

of P'D onto ISL(2,C) x5V, But P''¥ is not the unique
representation group for P’ up to topological group
isomorphisms. To show this, we notice that by Ref, 11
(Progosition 1), by the inflation-restriction sequence
for (Py, Py, ppy; {1, - 1}, and since H2(V,{1,- 1},)=C,,
we obtain

H(P' {1, ~ 1}) = Cy X Cy,

Hence, together with the cohomology class of the
trivial 2-cocycle and that of &'V ={i, there exist two
other elements of H%(P', a, - 1h) having as representa-

tives the 2-cocycles 1*" and 1® defined by
LA, Av), (7, A"v")

B ..ﬁ“)((t,Av),(t',A'U’)) ifo=v'=e,

= ﬁ(l)((t, ADY(E', AT0")) otherwise,
B, Av), (7, A""))

_ -1 ifU:U’:—é,

1 otherwise

for all (,A), (',A") in Pyand allv,v’ in V, As
H(P', U(1),) = C,, we prove that the group

PP =1, - 1P

{equipped with an obvious group topology) is a quantum
mechanical P'-group by showing that (Ref. 1, Corollary
to Proposition B, 1)

H}__(ﬁ'(Z),U(l)I)"’Cz. (I, 1)
I fe z{(P'®,U(1);), we have
FlE, ¢, A)) =1 (101 2)

for all e {1,- 1} and all (¢,A)e Py, For, if we put
1Py xPy= P, the subgroup {1, - 1}ijif Py of P'®
is topologically isomorphic to ISL(2, C). Furthermore,

f(lyz) :f(gy (ty A))f(lyz) :f(gy (t’ AZ’))

for all £ {l,- 1} and all ({,A) € P;. On the other hand,
since f(1,2)* =1, f(1,e)c{xi,x1}; yet it follows from
(III. 3) that actually f(1,e)e{1,~1}, hence (IIL 1) is
satisfied and P'® is a quantum mechanical P'-group
which is not topologically isomorphic to P*D, 1 E®
denotes the topological group {1,- 1}1‘¥P’, we have
that #L(E® U(1),).is a cyclic group of order 4 because
relation (TIL 2) [and then (IIL 3)] is not satisfied by

fe ZYE™ U(1),). Therefore, up to topological group
isomorphisms, we have only two different quantum
mechanical P'-groups, namely, P'? and ',

(A.3) P,: Since zi(p,,U(l)@pO)zU(l), the representa-
tion group
ﬁ«.:{l’ - 1}2”]"_?,'
for (P,,Py) is unique up to topological group isomorph-
isms (Proposition B), i, e., it is THE quanium mechani-
cal P,-group, The mapping

(£, &), (¢, Av)) — (&, (¢, £0(A)), ) (1, 4)
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(5, in{l,~1} ¢, N e Py;ve V)

is a topological group isomorphism

P, {1, - 1} (I8L(2, C) x5 V"),
where V' is defined by
Bt A), ), (¢, A7), v")

= ud(t, pry(Aw), ¢, pr A ").

(A.4) P}!: Also in this case we have
Zo(P.l, U()e ) = U(),

(11, 5)

so that the representation group

Pl={1,-1}uP}
for (P..,P,) can be called THE quantum mechanical
P,. -group (being unique up to topological group

isomorphisms). Here, the mapping (IIL 4) with v e V*
is a topological group isomorphism

P! —~{1,- 1};»'(SL(2,C) x V"),

where v’ is defined by (III, 5) with v’ instead of 7’ and
u4 instead of uj,

(A. 5) P: The topological group
PO={1,-1}uP

is a representation group for (P,P'), i.e., a quantum
mechanical P-gvoup, and the mapping

(5 &, BN, (4, A0) = (8, £7), (2, E0 (M), 2)
(&, &, 8" in{1,-1};(t,A) c Py;v e V)

is a topological group isomarphism

P —{1,- 1} (BL2,C) X, V),
where v is defined by
v (((t, 4),2), (¢, A7), ")

= (3¢, o,y (A), (', p1y (A"),

ual(t, pry (AW), (7, pyy (A0))).

However, P is not the unique representation group
for (P, P') (up to topological group isomorphisms). To
prove this, we first consider the “possible” non-
Abelian representation groups for (V, V), They are the
non-Abelian groups of order 16 whose centers contain

a subgroup isomorphic to V, In Table I we give, by
generators and relations, a representative F; (1 <¢<9)
for each of the nine classes of isomorphic non-Abelian
groups of order 16 (cf. Ref, 13, Sec, 118). The neutral
elements of the F; are all denoted by e. The meaning of
{® in Table I is that of the subgroup generated by

®; D, denotes a dihedral group of order 2m, @, a gen-
eralized quaternion group of order 4n, and qD,, a quasi-
dihedral group of order 2m (Ref. 14, Kap, I, 14,9), It
follows that only the groups F; for 2<i<35 are “possi-
ble” non-Abelian representation groups for (V, 7). On
the other hand, if F; is such a representation group,
there are a priori three admissible splitting projectiong
pi,; (1 <j<3)of F; onto V up to the interchange of e’
and ¢/, Furthermore, since

V=V (V,U(1)®7),

it is enough that F; satisfies, for at least one j,
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TABLE I. The non-Abelian groups of order 16,

TABLE II. The cohomology groups H‘(Fi,U(l)@Ni ,-) (2<i<s).

Set of
genera-

Symbol  tors Relations Center
4_ 2_ 2 1= pg?

F, {a,b,c} at=e, bé=e, c°=e, chc as, (@)
bab'=a, cacl=a
4= 2= 2= -1=ab

Fy {ap,c} @€ Pime cime cacTEab, gy
cbel=b, babl=a
4_ 2_ 2_ K.

7, lab,c} a‘=e, b°=e, c*=e, cac™i=a", (2,5
chel=b, bab=t=qa
4_ 2.p2 plo “_

7, la.b,c} a*=e, a*=b*, c’=e, cac”'=a, (a?,¢)
chel=b, babl=a!

F, {a,b} a'=e, bt=e, bab-l=g"! {a?, b}

Fy {a,b} ad=e, bl=e, bab =g (ad

F.;=Dy; {a,b} ab=e, bl=¢, bab-l=g"! (a%

Fg=qDy {a,b} ab=e, bl=c, bab-'=a’ {a%

Fe=Q, {a,b} at=e, a*=b2, bab-'=qa"! {a¥
~ gl ~

H‘(F,.,U(I)QN, j)~H (V,U()g3) =Cy,

where N; ;=p;};(V) (Ref, 1, Corollary to Proposition
B.1). The groups N, ; and H'(F;, U(l),, ) (2<i<5;
1<j<3) are given in Table I, It follows from this
table that every non-Abelian representation group for
(V, V) is isomorphic to F, with splitting projection

pa,2 Or to Fy with splitting projection ps 5 or ps 3. We
have topological operations ¥; =@op,; , ({=2,5) of F; on
ISL(2,C), where ¢ is as above. Then the topological
semidirect products

E,(P)=I8L(2,C) Xg Fy (=2,5)
are nonisomorphic representation groups for (P, P’)
with splitting projections
pi 2 (6, 4),d)~ (pp, (t, A), py,o (@)
because
H(E4(P), Ull)gge,, ) = Hy(P, U(l)g ) # Ca.
On the other hand, if ¥¥=¢.p; 3,
E (P)=1ISL(2,C) X & Fy,
and 7 is the automorphism of F; defined by ¢(a)=a [or

2{ab) =), ¢(b)=ab (with the generators a, b given in
Table I), then the mapping

((t, A),a)~ (¢, A),24d)) ((¢,A) < ISLE,C);dc Fy)

is a topological group isomorphism of E;(P) onto E2(P),
Moreover, there exists a topological group isomorphism
of E,(P) onto PV defined by

((Z’ EO(A)),d) - ((5, Eé, gé/); (t’ Avd))
te{t,-15 ¢, N ePyde Ry,
where, if a,b,c are the generators of F, given in Table
L
aTEd=Ei=tl =~ t=- ) =1
and
v,=e’ (orv,=2'), v,=e, v,=e,
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Ff Nl'yj Hl(Fi’U(l)oNiyj)z
Ny = (a, b Cy

Fz N2,2= <a2,bgc> C2
N2'3:<ac,a2,b> CyxCy
N3,1=(a9b> C4><C2

Fy Nyq9= {@',b,0) CyxCy
Ny3= {ac,a?,b) CyxC,y
Nyy={a,0 CyxCy

Fy  Ny,=(b.0 CyxC,y
Ny = ab,atc) CyxCy
Ny 1= {a,b) Cy

Fs N; o= (a?,b) c,
Ny, 3= {ab,a?,b® c,

Proceeding as above, it is easy to check that among
the five classes of isomorphic Abelian groups of order
16 there is only one class of (isomorphic) representa-
tion groups for (V, 7). A representative of this class is
the group Fy=C,XC, defined by generators &, b and
relations at=e, bi=e, bab-'=a, A splitting projection
pg of Fy onto V can be defined by p{(a) =¢ and p{(b)=¢e’.
If ¥, denotes the topological operation ¢opj of F; on
ISL(2, C), the topological semidirect product

Ey(P)=1ISL(2, C) <y F,

is a representation group for (P,P') with splitting
projection po:((t,A),d)'-(ppo(t,A),p()(d)) (cf. Ref, 18,
Secs. 2 and 3), and it is not isomorphic to E,(P) or
E;(P). The interchange, in the definition of p§, of a, b in
Fyorof e’,e’ in V will lead to representation groups for
(P, P') which are topologically isomorphic to E,(P).

Remark 1: In order to find the CUAP-reps of P, it is
common practice®’ to study the CUAP-reps of
ISL(2,C) X, V, This a priovi arbitrary procedure is
justified by the result of (A, 5).

Remark 2: By removing all translations in Sec. ILA,
we obtain the corresponding results for Ly, L', L,,
L., and L,

B. The Galilei groups

The role of ISL(2, C) is played here by the universal
covering group Gy of G; and we make the usual identifi-
cation of each element g of G; with a 4-tuple
(t3, te, Ve A,), where f2,t,, v, are as in the case of G, and
A,€8U(2,C). The results for the quantum mechanical
Galilei groups are analogous, mufalis mutandis, to
those for the Poincaré groups and are given in Table
III, There, ¢ is the topological operation of V on G, such
that, for each g€ G,

(ﬂ(é)(tg, t,, vgyAg) = (t?ry -
<ﬂ(e')(t2, t(, v(?Ag) = (' tg) tp - v(! Ag)'

t:’ ~ Ve A:)!

The meaning of ¢, ¢’, ¢’ and of &, ¢,...,v’, v should

be clear. In addition, we have the topological opera-
tions ¥; (i=2,5,0) of F; on G, defined by ¥,

= ((pN‘,z) Po Dt.z)_for i=2,5and by Y= ((pN()s @< pg),
where Ny =p;-!(V). The topological group isomorphisms
of Table IIl are obtained from the corresponding ones
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TABLE III. The quantum mechanical Galilei groups G.

(G,N) ZUG, Utoy) ~

G
Gy G =(Rx{1, -1}, ne)Go R

¢ ~
~Rig Gy

G'W=(Rx{1,-1})7,2 MG

G' AR E(Gyxg RxC,
5’(2’=(RX{1,—1})I(E,IL(2))G?
=(Rx{1, -1}2)%,' ', LG,
(G,,Gp L(Rx{x -1})0(} &, 7)Gy RxU(Y)
Xz V)
Git=(Rx11,=1Pog (0 ,1K)GI
(G, Gy A@Rx{1,-1) o5 &) e RxU(1)
X ge V')
G =(Rx{1, -1 ogrn, WG
4 ®Rx{1,-1}Bo,, V)((N}O
oW
(G,G" where M:GOxBV RxU(1) xC,
% B,(G) = GoxvyF,
E (G) G()X\]/SFO

EyG) =Gy %y Fy

for the Poincaré groups by replacing ({,A) € P, with
ge Gy and by “adding the reals.” I (G, N)

€ {Gy, (G,, Gy), (G;, G)}, the group G is the unique sec-
ond countable locally compact representation group for
(G, N) up to topological group isomorphisms: It is THE
quantum mechanical G-group, This assertion follows
from Proposition B, ¥ G=G", we have, using Ref, 11,
Corollary to Theorem 1 and then proceeding as in the
case of P',

H%(G', R ><C2) x)zH%(G', R;) XH?,(G', (Cz) 1) zRXCZ x Cy,

Up to topological group isomorphisms, there exist only
two different quantum mechanical G'-groups, namely,
G'Y and '™, In fact, “adding the reals” does not in-
crease the number of classes of isomorphic quantum
mechanical G'-groups (in analogy with the case of Gy).

APPENDIX A

The following proposition is a corollary to Ref, 11,
Proposition 1,

Proposition A: Let G be a Polish group which is the
topological semidirect product of a subgroup S by a sub-
group K and let A, be a Polish G-module such that ¥(K)
={Id,}. Then

H%(G,Aw) zH%(K, AI)S XHZb(S,AWIs)
in each of the following two cases:
(a) Z (K, A,) is trivial,

(b) S is finite and Zl(K, A,) is divisible and torsion
free,
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Proof.: We begin with an observation valid in both
cases, The notation and results of Ref, 11, Proposition
1 and of the remark preceding it, yet with the groups
written multiplicatively, are tacitly understood (cf, Ref.
15, Remark 1),

If [ ] e H3(K, A;)S, there exists, for each sc S, an
element f2'> of Clix, 4y satlsfymg ¥ 2 (8)fy fiéfz .
Moreover, we can choose f,¢s’ satisfying £,¢5' (k)= e,
for all 2< K, It follows that

fz(s)(@l(S)fz(s'))(fz(ss'))-l — h(s, = Zi (K’ Aj) (A)

for all s,s’ in S and we check that the mapping % : (s,s")
~ Ti(s, » belongs to Z2(S, Zf:(K,AI):,AZ,S)o

Now in case (a) we have Hi(K, A;) =H (K, A()®,
whence the assertion, because condmon (11’) is satis-
fied by virtue of (A), In case (b), H*(S, 2! K, AI).,,i 1s) is
trivial by Ref, 12, Chap. Iv, Corollary 5 4, Hence
there exists [ € C‘(S Zl(K, AI)\,,Z|S) such that

h(s,s") = HeELS (s N (ss )
for all s,s’ in S, where & is as above, We have
HYK, A =HLK, AD® because (i') and (ii’) are satisfied
by f; and ' =£'91(s)! (s €S). Indeed, if f, is given
by Ref, 11, (4.5), the mapping ff ;K XS— A defined by

fi(ky 5)=follke, ) (T(s) (s (k)))

is Borel (by Ref. 16, Sec. 31, V, Theorem 2) and we
have

O Ry =¥(s)f (R, 571!
forallseSandall ke K, n

Remavk: I the Abelian group A is divisible and
torsion free, then so is Z1(K, A;) (Ref. 11, proof of
Proposition 2), It follows that case {b) of Proposition A
improves Ref, 11, Proposition 2,

APPENDIX B

Proposition B: Let G be a second countable locally
compact group and let N be a closed normal subgroup
of G of index 1 or 2, Suppose that the following condi-
tions are satisfied:

(1) H2 42(G,R, ) is isomorphic to the additive group of
R" (n= 0).

(2) Let 7 be the covering prO]ectlon of R onto U(1),
The group homomorphism (175)2 of HB(G R, ) into
HY(G, U(1), ) has closed kernel in the canomcal
topology and countable cokernel.

(3) ZL(G,U(1)s,)

Then, if E,E’ are two arbifrary representation
groups for (G, N) with, respectively, splitting projec-
tions p,p’, there exists a topological group isomorph-
ism A of E’ onto E such that pex=p’,

is divisible,

Proof: We generalize an argument of Moore (Ref. 17,
Proposition 3, 2) and use the notation of Ref, 1,
Proposition 8. Take the (G N)g-selector s and the
representation group s(H> B evsG for (G, N) with split-
ting projection pry consm'lered in Ref, 1, Corollary to
Proposition 5, If ¢ is the Borel sphttmg section
g+ esul),8), thens=s, (Ref, 1, Remark 6), We
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identify E (resp. E’) with s,(H%); JC [resp. with
s,(HzB);Nf’G] by means of k% (resp. of %), where f
(resp. f') is in Z3(G, s,(H%), ), and choose a normal-
ized Borel section 0; (resp. 0,) associated with p
(resp, with p’). For each [u]e H%(G,U(1),,), we put

Sop (D50, (D) = (1] oy o>
and see that (4], o, € B}(G,U(1),,). On the other hand,
the extension (CL(G. U(l),,),6) of BX(G, U(1),,) by
Zi(G,U(I),N) is inessential by virtue of assumption (3),
and so there exists an injective group homomorphism

8:B}(G,U(l),,) = C4(G, Ul)s )
such that 6(8(1)) = p for all pe B}(G,U(l),). We then
have an element % of C}(G, s,(H%),,,) defined by

h(g)so (k1) =81, 0)(8)

(n]e H3(G,UQ), ).

Indeed, k(g) is a group homomorphism for all ge G
because 80 are Sy, S, S, and 8. Furthermore, if (1]
is given by Ref, 1, (III, 3), we have

[“‘](01,02)

n

=1 ooy (7 07 1¥)) 100, (1 0 72 ) 10y (8" (€]) 2,4, (s [€D))
(r;€R),

whence the continuity of k(g) for all g< G, with an ap-
propriate choice of 8, Since the mapping g~ %(g)
x(S {(u])) of G into U(1) is Borel for all [u]
€ H%(G,U(1)y ), & is Borel by the argument at the
beginning of the proof of Ref, 1, Proposition 5; there-
fore, he Ci(G, so(Hza);N). To end our proof, it is enough
to remark that

(f"(g,8"*f(g,8")(s,(1])
=[1tey,0,0(2:8")
=561 0p))(258")
= (5h(g,8") (s, 1))
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for all g,¢’ in G and all [p]e H3(G, U(l),,) because
we can choose

[ = (sz ° evsvz)'l('iw1 o eviet),

As usual, we have denoted two different coboundary
operators by the same symbol &, L]
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We derive and discuss some exact solutions of the full (nonlinear) Boltzmann equation. One of these is the
similarity solution recently found by Krook and Wu for the velocity relaxation problem. Other similarity
solutions do exist, and we point out their usefulness in the search for exact solutions of the spatially

inhomogeneous Boltzmann equation.

{. INTRODUCTION

In a recent paper Krook and Wu' reported an inter-
esting exact solution of the full (nonlinear) Boltzmann
equation, describing the relaxation of the distribution
function to the equilibrium Maxwellian. They considered
an infinite, spatially homogeneous and isotropic mon-
atomic gas, with a model potential such that the elastic
differential cross section is given by

(1.1)

where K is a constant, g is the relative speed, and y
the scattering angle in the center of mass system.

olg.x)=x/g,

The work of Krook and Wu is remarkable for several
reasons. First, of course, is the fact that they ob-
tained an exact solution to the relaxation problem, and
exact solutions of the Boltzmann equation are hard to
come by. As is well known, the only exact solutions
that were previously available consists of very special
local Maxwellians, namely those such that the fluid
dynamical variables are solutions of the Euler equation
which satisfy the condition that the heat flux vector and
the stress tensor vanish, and therefore are simulta-
neously solutions of the Navier-Stokes equations.? These
solutions are not particularly interesting, since a local
Maxwellian makes the collision integral vanish identi-
cally, and one cannot therefore obtain information about
dissipative processes.

There is a second important aspect to the work of
Krook and Wu, By using an ingenious method, they
transformed the original nonlinear integrodifferential
equation into a nonlinear partial differential equation,
for which they wrote down a similarity solution of the
“shock transition” type, without however giving a de-
rivation. Because there exist well established group-
theoretic methods of searching for similarity solutions
of differential equations,?® it seems of interest to carry
the analysis of Krook and Wu a step further, and ex-
plore whether other similar ity solutions exist for the
full Boltzmann equation, and if so, for what problems
of rarefied gas dynamics they might be relevant.

AWork supported by the National Research Council of Canada.
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It is the object of this paper to report on such an
analysis. In the next section we shall first review
briefly the method of Krook and Wu, This will serve us
to indicate the few cases in which our notation differs
and, at the same time, to point out a minor aspect
of their derivation which is incorrect.

. THE KROOK-WU SIMILARITY SOLUTION

The state of the gas at time ¢ is described by the
distribution function nf{¢, v), where = is the constant
number density and v=|v | is the speed of a particle.
Since the system is spatially homogeneous, and as-
suming that the cross section is given by (1. 1), the
Boltzmann equation becomes‘’:

0
a_’rf('r, o) (2.1)
==, ) gy faw [ e sin [ defto, At ).

Here, as usual, the primed variables refer to the speeds
after collision, whose relation to v, w,y and e is given

by Egs. (6) and (7) of Ref. 1; 7=4wn«t is a dimension-
less time variable, and the condition of constant den-
sity

fdvf(T,z')zl (2.2)

has been used. Of course the kinetic energy is a con-
stant as well, so that

[ ave?f(r, 0) =3 (ky T/m) =35,

where k5 is Boltzmann’s constant, m is the mass and
T the constant temperature.

(2.3)

The central idea of the Krook—Wu method is the
following. Defining normalized moments of f{1, ») by

1/2
M"(T):W)"L-TI‘() [ dv?if(r,v) (n=0,1,2,...)

nt+3z
(2.4)

allows a transformation of (2. 1) into the following
ordinary differential equation (o.d.e.):

M) M) = 5 M (M, (7).

= (2.5)

Furthermore, introducing a generating function for the
moments
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G(T, &)= 2, &"M,(7), (2.6)
and making subsequently the transformation of vari-
ables

x=(1-8)/& ulr,x)=E'G(r, £), 2.7

allows a reduction of the o.d.e. (2.5) to the following
partial differential equation {p.d.e.)

(2.8)

where the subscripts x and 7 stand for partial differ-
entiation,

Ugp + U + 22 =0,

At this point Krook and Wu notice that (2. 8) admits
the similarity solution

2.9)

where ¢ is a constant still to be determined. This is
done by imposing the conditions

M(T)=M,(1)=1,

w(t,x)=x"F(n), mn=Inx+cT,

(2.10)

which correspond to equations (2. 2) and (2.3). Thus
one finds ¢ = % Then substitution of (2.9) into (2. 8)

gives
F"+5F'~8F(1-F)=0, (2.11)

where the primes denote differentiation with respect to
the similarity variable n. Equation (2. 11) can be re-
duced to a first order o.d.e., i.e.,

pp +5p~6F(1-F)=10 (2.12)

in terms of the variable p=p(F)=dF/dn. And the solu-
tion of (2.12) is

p=2(1-F)1-V1-F), (2.13)
which, in turn, gives
Fm)=1-(1+expln +b}y?, (2.14)

where b is a constant to be determined.

With the explicit expression (2. 14) for F(1) the func~
tion #(7, %) is known, and so is G(r, £). Therefore, the
moments M,,('r) can be determined, after which an in-
version of (2.4) gives the distribution function f(r, v).
The result is

(2. 15)
where the new time variable 6 is defined by
6=1—exp{~ %(T-F 7)), (b=1,/6).

The expression (2. 15) is the same as the result of
Krook and Wu, except for the definition of the new time
variable, due to the presence of the constant 7,. This
is necessary, of course, since the distribution func-
tion must be time-translationally invariant, as is easily
seen from (2.1). The actual value of 7,—i,e., of the
arbitrary constant of integration b in (2.14)—is deter-
mined by the requirement that

fr, )20 (0<7<),

(2.16)

(2.17)
which gives 7,> -6 Inf =5 5.

A second remark concerning the Krook—Wu solution
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concerns the role played by the boundary conditions.

In connection with the determination of the constant ¢
appearing in the similarity variable 7, they state that
one needs not only the conditions (2. 10), but also the
further condition

Mn(w):l, n.—_0,1,2,..., (2018)

which corresponds to the relaxation of f(7, v) to the
absolute Maxwellian

_ exp(-1?/28%)

flr =20, v)———y—*(zﬂsz) . (2.19)

This is actually incorrect, i.e., the conditions (2, 10)
are sufficient to determine ¢, as the following proof
shows.

We have on the one hand

1=MU(T)=}im G(r, &), (2.20)
and therefore

1 1:5.)_ - 2.21

gu(r, : =1 (as £—0) (2.21)

which can also be written in terms of the variable x

(2.22)

u(r, x)= 1 -1Fx + O(%) (x large).

On the other hand the second part of (2.10) can be writ-
ten

1=M,(r) = lim 2 6(r, ) (2.23)
and therefore, in terms of the variable x,

(1+xPu,+ 1+ xPu+1=0 (as x— ), (2. 24)
Letting v=1 + x and solving (2. 24) gives

w(v)=D/v+ 1/7% (as v — ) (2. 25)

where the constant D=1 in virtue of (2.22). This trans-

lates into a condition for F(v), namely
F(v)=1-1/1* (as v —«), (2.26)

But as v« (for some fixed 7) we can write v~e";
hence (2. 26) becomes

F(m)~ 1 - exp(-2n).
Substituting into the equation for F(n), i.e.,
F'+c¢Y1-¢c)F' - (F/¢)(1-F)=0,

(2.27)

and retaining only terms Of exp( - 21)] gives c==.
QED. We shall discuss further the role played by the
boundary conditions in the next section.

I1l. OTHER CLASSES OF SIMILARITY SOLUTIONS.
ROLE OF THE BOUNDARY CONDITIONS

The similarity solution discussed in the previous
section was not derived by Krook and Wu, ! but simply
written down. It seems therefore of interest to show
that it can be derived by the same group-theoretical
methods which have been so successful in problems of
fluid dynamics—among others—over the recent past.?

We concentrate first on the question of finding simi-
larity solutions for the nonlinear p.d. e.
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o Tty H? =0, (3.1)
without imposing any boundary conditions. Thus we
replace (3.1) by a system of first order p.d.e.'s

U =W, (3.2)
w,+w+u? =0, (3.3)

in order to construct the main
(3.2) and (3. 3) invariant, we seek

where w=w(r, x). Then,
group leaving Egs.
an operator?

9

0 2 0
(=7, == + N +0T, — —
X Mgy Ty T, tO ow ’ (3.4)
whose first extension we shall write
~ 0 0 2 0
(= X+ {,— +{ — — —
X=X gf’ap §“8q+£'ar+€sas’ (3.5)
where p=u,; g=u; vy=w_; s=w, and the expressions

for the additional coordinates which are needed in this
case are

2 o ) 0 d 0
£ <ax+q8u S%)O‘—‘b<ax q8u+s%) K
0 2 Gl
<8x KF™ au ﬁ) T2 (3.6)
0 ) 0 0 0 0
g,_ <§;+p-a—1; +’V'é%>02—7’(57 +pa—u- +7’%>n1

) ] 0
—_ 4 h— e
s(a'r 'bau +Taw>n2'

Equations (3. 2) and (3. 3) are now rewritten in terms of

(3.7)

the variables p, g, 7 and s, yielding the following system:

q=w,
S:
r+w+ =0,

The conditions that the group leaves (3.2) and (3. 3) in-
variant are X(S)=0 on the manifold S. Hence

(3.8)
(3.9)

from which, using (3.6) and (3.7) and eliminating gan
7 by means of S, the set of determining equations for
the operator X is obtained. This gives

£,=0y,

g, +0,+ 2uc, =0,

N, =n,(7), (3.10)
1, =1,(x), (3.11)
0, =% 4wl ), (3.12)
Tox du 2 :
90. 2 9% 4 :
02+2uol+—a~$— - (2 +w) P + (2 + wni(1)=0, (3.13)

where the prime denotes differentiation with respect
to the argument of the function involved.

Equations (3. 10) to (3. 13) can be solved exactly, with
the result that the expressions for the coordinates of
the operator X are

1 (7)=8 - a exp(7), (3.14)
To{x) =yx+ 6, (3.15)
o,(1,1)=[a exp(T) = ¥ Ju, (3.16)
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(3.17)

where o, 8,7, and 6 are arbitrary constants. Thus a
one-parameter group depending on four arbitrary con-
stants is obtained. In order to find the invariants we
must solve

X()=0, (3.18)
(3.14) to (3.17),

o, (7, w)=[a exp(1) ~ 2y Jw,

that is, with the help of Eqs.

. dr __dx du
B=aexp(t) yx+06 [aexp(r) -

dw
YT T [oexp(n) - 2yTw -

(3.19)

It is now easy to find particular cases of similarity
solutions. For instance, on choosing « =6=0, 820,
y #0, and letting ¢ =7/, we obtain

u(T, x)=x""F(n),

where F is an arbitrary function of the similarity var-
iable n=1Inx+ c7. Eq. (3.20) is just the class of simi-
larity solutions found by Krook and Wu' and discussed
in Sec. II. In a similar fashion other classes of simi-
larity solutions can be found. For example, letting
a=p3=56=0and y+0 in (3. 19) we obtain

u(T, x)=(yx)"tH(7),

where H is an arbitrary function of r. Substitution of
(3.21) in (3. 1) gives the first order o.d.e.

H' +H-y3H=0,

(3.20)

(3.21)

(3.22)
whose solution is
H(T)=[{Cexp(m)+ 1]
so that (3. 21) becomes
(yx)[C exp(r) + 1] (3.24)

Naturally, whether a similarity solution of Eq. (3.1)
is physically acceptable or not will depend on the speci-
fic boundary conditions that the problem under study
imposes. And since the Krook—Wu procedure changes
the order of the differential equations involved in the
various stages of the calculation, obviously the proper
number of boundary conditions changes too. In particu-
lar this can be easily seen in the velocity relaxation
problem, where a solution of the spatially homogeneous
Boltzmann equation is sought subject to the condition
that the number density is constant at all times. Here
the theorem proved by Carleman for hard-sphere po-
tentials and by Morgenstern for pseudo-Maxwellian
molecules (see, e.g., Ref, 4) can be invoked to con-
clude that such a problem has a unique solution, namely
the Krook—Wu solution. On the other hand, while it is
an easy matter to show that the condition M (7)=1
implies that the condition

(C =arbitrary constant) (3.23)

u(r, x)=

(3.25)

holds for the variable u(T, x), the converse is not true.
For instance, the similarity solution (3.21) obviously

satisfies (3.25). But the corresponding expression for
the moments of the distribution function is

u(T,x=2)=0

M (1)=77[1+Cexp()]? (any n), (3.26)

in violation of the condition of constant density. In
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other words we must impose a second boundary condi-
tion, which is naturally chosen to be

w(t=»,x)= 1/x, (3.27)
corresponding to the relaxation of the distribution func-
tion to the final Maxwellian. Then it can be shown that
(3.25) and (3. 27) together rule out all similarity solu-
tions of (3.1) except (3. 20).

In view of the above conclusion, classes of similarity
solutions which are not of the Krook—Wu type may have
a physical meaning only if the condition of constant
number density is relaxed. Then, of course, the Boltz-
mann equation must be modified by the addition of a
source term which supplies (or subtracts) particles at
an appropriate rate. Thus we must solve the equation
I

1 T .
ppe —f(T.T’)def(T,w)+Efdwf0 dy siny

T, V) =

X ./‘02” def(r, ') flr,w)+S(7,v), (3.28)
where S(7, v) is an (as yet) unspecified function of time
and of the speed of the particles. On taking moments,
we find

d_iMn(T) ,:= (T, (T)
+Q,(7), (3.29)
where
Q"(T)zmﬁ;g_%(_nri_)fdv v?1S(T, v). (3.30)
Furthermore, let
QA1) ==M, (D1 =M, ()] +R(7), (8.31)

which is equivalent to saying that S(r, v) consists of a
particular kind of sink and an arbitrary source. Then
we can rewrite (3.29) as follows:

1 n
2

d
AN TM D=5

M (T, _(T)+ R (1), (3.32)
and, with the procedure outlined before, transform
this equation into a second order p.d.e., viz.

Uy, T+ ut - =0, (3.33)

where ¢ = (7, x) results from the source term R. On
searching for similarity solutions of (3. 33), one finds
now that among the set of determining equations there
is a compatibility condition which ¥ must satisfy, name-
ly

(yx + é)g—ﬁ +[B-a exp(T)]g-f =—2[y — a exp(7)]¥,

(3.34)
where @, 3,7y, and & are arbitrary constants. And
since this is a first order linear p.d.e. it is equivalent
to
dx dt _ daiy
yx+6 B-aexp(t) -2[y-aexp(r)y’

from which ¢ can be determined,

(3.35)

As an example, let 5=8=a =0 and y=1. Then one
finds (7, x) = ¢(7)/x%, and the simplest similarity solu-
tion of (3. 33) is given by
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u(r, xy=x"G(1), (3. 36)

which is of the same class as (3.21). The arbitrary
function of time ¢(7) must be prescribed. For instance,
we could imagine our gas to be isolated and in equili-
brium at the initial time =0, Then a sink and a source
that behave in the manner described above are switched
on, and the source corresponding to ¢(7) has a con-
stant rate k, say. In this case

&(7) =kh(7),

where k(1) is the unit step function, and the distribution
function is given by

(3.37)

1 §-2 exp{~1%/20?%)
f(f), 1)—5[1'1'(—9—) V4k+1]W72—‘, (3.38)
where the time variable is defined as

g=1+c exp(-vVdk+17), (3.39)

and ¢ is a constant. Finally, since f(8,v) = 0 for physi-
cal reasons, we must have - § <k <0, which means that
the term (3.37) is a sink as well

The solution (3. 38) helps us to give meaning to the
similarity solutions which are not of the Krook—Wu
type. Indeed, suppose that k=0, i.e., $=0 in (3. 33).
Then the p.d.e. is formally the same as Eq. (3.1) and
the solution (3. 24) would correspond to the distribution
function

-2

S, 1))2%(1+Cexp(7))‘%%%g—;w/zzﬁ—l (3.40)
This solution violates the boundary condition for re-
laxation to equilibrium, but is consistent with (3. 38),
as can be seen from the latter by setting #=0 and re-
defining the constants appropriately. In other words,
the classes of similarity solutions which are not of the
Krook—Wu type can be regarded as exact solutions of
the spatially homogeneous Boltzmann equation in the

presence of particular kinds of sinks,

It should be noted that the introduction of this special
kind of sinks need not be taken literally as representing
some physically realistic situation. Rather it should be
thought of as a conceptual device which gives meaning
to some classes of exact solutions of the Boltzmann
equation for the homogeneous, isotropic and pseudo-
Maxwellian gas. Their possible relevance to more
realistic situations will be discussed in the next section.

{V. SOLUTIONS OF THE NIKOL'SKii TYPE

Most interesting problems of kinetic theory and rare-
fied gas dynamics concern systems which are inhomo-
geneous in space, i.e. in which the system can be
described by a distribution function f(/, r, v) depending
on the space variable as well, and obeying the Boltz-
mann equation

Ly Vf=f//(f'f; _ f,)eb db de dv,,

in the usual notation.?

(4.1)

More than a decade ago Nikol’skii® noticed that if one
looks for a solution of the Boltzmann equation of the
form
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fi, e, vI=FloW),v]; y=tlv-r/1),

and if the interaction force is repulsive and of inverse
power form, k7%, then for v>2 Eq. (4.1) becomes

o0 = il [ fir,y006,7)

(4. 2)

(4.3)
- F(¢,7)F(¢,7,]% |y, —v|b db de dy,.
It then follows® that we must have
d"(f): ‘t\q[&-v)/w-l)l (4.4)
:ff (F'F} =FF)) |y -y, bab de dy,. (4.5)

Thus the transformation (4, 2) gives a class of solutions
to the complete Boltzmann equation (4. 1), in which a
spatially homogeneous solution of (4. 5) is associated
with the distribution function at each point. Conse-
quently one can generate exact solutions for the spatial-
Iy inhomogeneous problem from exact solutions of the
homogeneous one.

Even without the knowledge of any exact solution of
(4.5), Nikol’skii was able to discuss some properties
of the distribution function (4.2). For simplicity we
shall assume that v=5, which corresponds to a model
potential consistent with the cross section (1.1)., More-
over we shall concentrate on those motions of the gas
which occur for £>0, and shall understand that the
independent variables {, r, v are expressed in dimen-
sionless form. Then integration of (4. 4) gives

d(B)=a -1/28 (t>0) (4.6)
and so the distribution function is
f(/,r,v).—_F(a—l/Zl?‘, Y), (4- 7)

where the initial value of the dimensionless time vari-
able can be taken as f=1, without loss of generality.

Suppose now that one assigns the initial distribution
F(a - 3,7). Obviously it describes a nonequilibrium and
homogenous state of the system. According to the H
theorem such a state, when left to itself, would evolve
to the Maxwellian equilibrium when ¢ —«, But as (4. 6)
shows, the quantity ¢(}) -~ @ when t— . Hence the solu-
tion (4. 7) of the Boltzmann equation cannot describe
relaxation to equilibrium. In fact Nikol’skii shows that
it corresponds to an expansion of the gas in infinite
three-dimensional space. He also shows that a similar
conclusion holds for arbitrary v> -;-, including the case
v— <, which corresponds to a hard-sphere potential.

In order to see more clearly what kind of motion of
the gas the solutions of the Nikol’skii type do represent,
it is convenient to consider the behavior of the fluid
dynamic variables. Once the distribution function is
known, we have for the number density

n=favfit,r,v)=(1/% [ dv F(¢,7),

which is seen to be independent of the space variable
r. This behavior is just a reflection of the fact that the
Nikol’skii solutions refer to cases in which the distri-
bution function is constrained to be the same at all
points. The average flow velocity, on the other hand,
does depend on the space coordinates, since we have

(4. 8)
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nu(t, D = [ dvvft,r,v)= (1/t3)fdy(r+">F(¢,v),
(4.9

and therefore, using (4. 8),

wt, =% -2 fay 2 P, ). (4.10)

Thus the gas velocity consists of two parts. The first
depends on the space coordinates and is kinematical

in nature. It does not depend on any dynamical quantity
and its physical origin comes from the presence at

r of those particles which took exactly the time f to get
there. The second part, instead, is dynamical in nature
and does not depend on the space coordinates, again
reflecting the peculiar characteristics of the Nikol’skii
solutions.

We note, incidentally, that the existence of a kine-
matical part in the flow velocity also occurs in the case
in which one considers the collisionless expansion of
a gas into vacuum. ® It is easy to show that in that case
the distribution function has the form

ffree(isr) V):G(I‘—V[, V), (4' 11)
which gives for the gas velocity
__£ 1 ' IZ: < ’ r'?’”)
u(t5r)“t_n.1(iyt4Gy’ / ’ (4'12)

showing that the dynamical part depends on the space
coordinates as well, It is interesting to observe that

in the free expansion case there is a kind of “diffusion”,
despite the absence of collisions or walls, due ex-
clusively to the kinematics of the flow,® For the
Nikol’skii solutions, instead, no such process exists
(despite the fact that the effect of collisions can be
taken into account exactly), since there can be no gra-
dients in the density for these solutions.

In discussing the above solutions of Eq. (4.1) no
assumption has been made as to the isotropy of the
system. Now, however, we specialize further to the
case in which the functional F in (4.2) is a function of
y =ly|. Moreover, if the interaction law is again as-
sumed to be pseudo-Maxwellian, then the collision in-
tegral in Eq. (4.5) can be split into two separate terms
and the equation reduced to the form (2.1), that is to
the starting point of the Krook-Wu method. Hence the
calculations of the previous section can be repeated
and the results become relevant for the search of
solutions of the Niko}’skii type. We shall not go here
into a discussion of any specific problem, It should be
noticed, however, that for the isotropic case and
spherical symmetry the flow velocity (4. 12) becomes

u(t, r)=7r/t, (4.13)

i.e., a particular case of u=7f(t), where f(f) is an
arbitrary function. Similarity motions of this type
include problems such as the propagation of a detona-
tion wave in a medium with variable density, the prob-
lem of an intense point explosion for constant or vari-
able initial density, and others. They have been studied
in the past by Sedov? from the standpoint of continuum
mechanics,
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V. SUMMARY AND DISCUSSION

In this paper we have studied the problem of finding
classes of exact solutions of the nonlinear Boltzmann
equation, assuming that the interaction law is pseudo-
Maxwellian. The work was motivated by the recent
paper of Krook and Wu,! in which they reported their
discovery of a similarity solution of the velocity re-
laxation problem. Because of the importance of the
work of Krook and Wu and the paucity of details of their
paper, we thought it useful to give a derivation of their
results based on well established group-theoretic
techniques.

We have shown that, thanks to Carleman’s theorem
of existence and uniqueness, the Krook—Wu result
is the solution of the nonlinear Boltzmann equation
for the case in which the number density is constrained
to being a constant at all times. Moreover, on re-
laxing the assumption that the system be isolated and
introducing sinks and sources, we have shown that other
classes of exact solutions of the Boltzmann equation do
exist. These are interesting not only as mathematical
curiosities, but also insofar as they are relevant to
the method of Nikol’skii® for generating a class of
exact solutions of the spatially inhomogeneous Boltz-
mann equation from the knowledge of exact solutions of
the homogeneous case.

The work of Nikol’skii went unnoticed, except for a
mention by Kogan? concerning the case of hard-sphere
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potential. The main reason for this neglect is prob-
ably due to the fact that, in the absence of exact solu-
tions of the homogeneous problem, the analysis of
Nikol’skii could not be carried further. Thanks to the
work of Krook and Wu, however, we are now in a
position to pursue such an analysis, as we have tried
to show in this paper. Thus it seems reasonable to
expect that in the near future some interesting problems
of gas dynamics—of the type considered by Sedov,” for
example—will be successfully studied from the point
of view of the Boltzmann equation and with the help of
exact analytical tools,
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By means of an expansion in ¢ ™' (c being the velocity of light) it is shown that the no-interaction
theorem of Currie, Jordan, and Sudarshan is valid only when terms of order of at least ¢ ~° are included.
To confirm this result, we derive the most general family of approximate Lagrangians up to order ¢ ¥,

whose limit is Newtonian.

1. INTRODUCTION

In predictive relativistic mechanics (PRM), the
evolution of an isolated system of N structureless point
particles is given'? by a system of second order ordi-
nary differential equations of the following type:

drl  ; dv} ; ;
Za =, SR =uiad, o)

( i,j,k=1,2,3 )

ab,e=1,2,...,N/’

where ¢ is the time and (x!)c IR® are the Cartesian
coordinates of particle a in a Galilean frame of refer-
ence. The functions pf{¢; x{, +%) which characterize the
dynamics of the system or, in other words, the inter-
action of the particles should make the system (1.1)
invariant under the connected component of the
Poincaré group, which implies the following properties:

(1.1)

(a) Time does not appear explicitly in uz, that is,

apl dut S
7 =0 so gt =10, ). 1.2)

(b) The following vector fields on the fiber bundle
T(]R3N)’ 3

.9 L
HEU; é‘;{ +[,Lla(xg, 1)’;) rp, s (1. 33.)
a ‘a
D
Pj=€aa;, (I.Sb)
a
; 2 ; il
J; =1, e e a +05 e Vg Eyn ) (1.3c)
a “a
1 ;0 A | ;1 \ 2
K== %uVa g T (5"53‘ T ot Vai¥e T 7 Ry “3> S
{1.3d)

verify the commutation relations characteristic of the
Poincaré Lie algebra, that is,

[P, P,]=0, [J;, P;]=n;,'P,, [3;,3;]=7:;'3;, (1.4a)
[Pi;H]:Os [Ji’H]ZO’ [Kin]:Pi, (1. 4b)

1

{K,-, Pj]= ‘c‘zéi;H, {Ki,lel‘Tlilez,

1 (1. 4c)
[Kz’y Kj] =~ ;zm,-’Jz

where |, ]is the Lie bracket of two vector fields.

It should be pointed out that the relations (1.4a) do
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not impose any restriction on the dynamical system

(1. 1), because they contain only the generators of the
Euclidean group, which do not depend on the functions
pi(xi, v*) as can be seen in (1.3b) and (1. 3c). However,
the relations (1. 4b) and (1.4c) are equivalent to the
following conditions on the functions pi:

£(P)) i =0, (1.52)
"£(JJ) Mi=77,-ikuf, (1-5b)
i, 1 i 1 i
-E(K]) i + —(;7 xaj_ﬁ(H) He=~— Ez (zvai Ky + Ve li,”-),
(1.5¢)

where /{ ) is the Lie-derivative operator. These equa-
tions were obtained by Currie' and Hill! as necessary
conditions for the invariance of the dynamical system
(1. 1) under the Poincaré group; later Bel® has shown
that they are also sufficient conditions. The interpreta-
tion of Egs. (1.5) is as follows:

(i) Equations (1.5a) express the invariance of the
functions p} under the space translation group, that is,
the functions u}; actually depend on the relative positions
of the particles.

(ii) Equations (1.5b) state that the p behave as
vectors under the rotation group, that is, they are
vector functions of vector variables with respect to
that group.

(iii) Equations (1.5c) are not easily interpreted. We
will only point out that they are related to the pure
Lorentz transformations (which are not a group) and to
the one-parameter group of time evolution generated
by H. Taking into account the structure of H and K;
given by (1.3a) and (1. 3d), it can be seen that Eqgs.
(1.5c) constitute a nonlinear system of partial differen-
tial equations,

Hereinafter, we will call the dynamical systems (1. 1)
satisfying Eqs. (1.2) and (1.4), or equivalently (1.5),
Poincaré invariant predictive systems (PIPS).

One of the fundamental problems concerning the
PIPS theory is to find out if such systems admit a
Lagrangian (or Hamiltonian) formulation compatible
with their invariance under the Poincaré group. Should
the answer be affirmative, then it would be possible
to define unambiguously the usual notions of energy,
linear momentum, angular momentum, and center of
mass, identifying them, respectively, with the generat-
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ing functions of the infinitesimal canonical transforma-
tions related to time evolution, space translations,
rotations and pure Lorentz transformations (in the last
case except for a factor which is the total energy of
the system). Unfortunately, as is well known, Currie,
Jordan, and Sudarshan® have shown that the usual
definition of Lagrangian dynamical system leads to a
no-interaction theorem, that is, the only PIPS which
admit a Lagrangian formulation compatible with their
invariance are the free particle systems (ui=0). How-
ever, it is also known that if one restricts himself to
second order in a formal expansion in powers of c!

(c being the velocity of light), he is then able to find
PIPS which admit a Lagrangian formulation compatible
with their invariance: Good examples are the dynamics
derived from the Lagrangians of Darwin,’ Einstein,
Infeld, and Hoffmann,® Bopp,? Bagge, !° etc. This fact
has allowed the conjecture that, from the point of

view of an expansion in 1/¢, the no-interaction theorem
of Currie, Jordan and Sudarshan begins to be decisive
at the fourth order, it then being impossible to find out
about approximate Lagrangians at the fourth and higher
orders. '

The main purpose of this paper is to show that the
mentioned conjecture is wrong and that it is actually
the sixth order which gives a classical (nonrelativistic)
limit of free particles. To strengthen this result, we
get, by using a simple procedure, the most general
family of approximate Lagrangians up to and including
the fourth order, having all the desired properties.
Moreover, the introduction of restrictions imposed to
order ¢ eliminates the possibility that the known
Lagrangians up to order ¢ are contained in the ap-
proximated Lagrangian up to order c™.

In Secs. 2 and 3 we give some results (some of them
already known and some other new) which are derived
from the notion of compatible Lagrangian formulation
of a PIPS. These results ease the work in the following
sections.

2. LAGRANGIAN FORMULATION COMPATIBLE
WITH THE ARISTOTLE GROUP

(A) Let us first consider a dynamical system of type
(1.1) invariant only under time translations, i.e., such
that (1.2) is verified. Usually, the dynamical system
(1.1) is said to admit a Lagrangian formulation compati-
ble with (1. 2) if a function L(x}, 2%) (without explicit
dependence on time) exists, such that

8L 3L 3°L
‘é(H) TU; = _a‘x—{ 3 det (m) #0 (2. 1)

As is well known, this definition is equivalent to the
existence of a symplectic form o on T(R¥), with the

following structure:
o=dxirdpt, pi=piled, o8 (2.2)

and invariant under the one-parameter group of time
evolution generated by H, that is,

+(H)o =0. (2.3)
We will carry out the proof of this equivalence for its

later usage.

781 J. Math. Phys., Vol. 19, No. 4, April 1978

Condition (2. 3), together with (2.2}, give the
equations

_a. a_ 0 b _

5] +(H) p? - ax;-é(ﬂ)p,_o, (2. 4a)
3p% ap’; _

oxi  axl =0, (2.4p)
2 . 5 _

B‘Ug é(H)Pi 8x§ =0. (2, 4¢)

From (2. 4a) and (2. 4b) it can be deduced that there
exist functions A(x}, v*) and B(x{, v*), defined except for
the transformation,

A—=A+3(0r), B—B+¥(x), (2.5)
in such a way that
a ___ _aé 3 _ aB
+H)pi= oxt bi= Er (2.6)
Using this result and (2. 4c), we have
?#U-B) — 2y b Snd
W—OJA—B—@(UC)““I/(XI,)- 2.7)

Realizing the arbitrariness (2.5), it is possible to
choose 4 =B = L{x], v%); after (2.6) and the fact that ¢
is of maximum rank, we get the relations (2.1). Con-
versely, let us suppose the existence of a Lagrangian
L(x{, ?) verifying (2.1); it is evident that the exterior
differential 2-form defined by

3L (2.8)
dvl

a

o=dxind

is symplectic and has the structure (2.2); moreover,
after taking into consideration (2, 1), we have

-ﬁ(H)o:dv;'Ad%%Mx:;A d:—ﬁso. (2.9)
QED

It is interesting to point out the fact that given a
symplectic form @ of type (2.2), the functions p%(xi, v%)
are defined except for the transformation

dJ :

Fpit g S, @.10)
and then the Lagrangian is defined except for the
transformation

. . 0
L—=L+£(D)S(), D=vfz. (2.11)

{B) Let us now suppose that the dynamical system
(1.1) is invariant under the Aristotle group (Euclidean
group and time tranglations), i.e., such that {1.2) as
well as the first two relations of (1.4b) [or either (1.5a)
and (1.5b)] are satisfied. In this situation we will say
that the dynamical system admits a Lagrangian formula-
tion compatible with its invariance under the Aristotle
group, if there exists a symplectic form of type (2. 2),
verifying (2. 3) and

+(P,)o=0, £(J,)0=0. (2.12)
These relations mean that the Euclidean group acts as

a canonical transformatijon group.
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Next, we will show the following theorem!?:

Theovem 2.1: If a symplectic form of type (2. 2)
verifies the conditions (2.12), then it is always possible
to choose the functions p¢(x{, v*) in such a way that

-A(Pj)p‘; =0, _E(Jj)P‘; =77jikpg s

that is, such that they are invariant under space trans-
lations and they behave as vectors under the rotation
group. Once this choice has been made, the arbitrari-
ness (2.10) still persists, but now with the condition

+(P;) S(xt)=0, £J,)S(x")=0. (2.14)

Proof: The conditions (2.12), taking into account
(2. 2), lead straightforwardly to the following equations:

(2.13)

2 a_ 9 b
ax,’j-é(P’)p" - ax;_é(P’)pk_O’

3 (2. 15)
37515(1’1)19: = 09

2 . a @
ax‘g (£ (Jj)Pi - nj,-'P;] - _ZEZ £ (Jj)PZ - njklp';] =0,
(2. 16)
L@ 5 - m,ip8] =0,
Uy

from which we deduce that there functions F,(x}) and
Q,(x) exist, defined except for additive constants, such
that

£(B)pi= 7 F, ), (2. 172)
) 1= y1'p = 57 4 0). (2. 170)

Taking into account (1.4a), the integrability conditions
of (2, 17) trivially give the following relations:

+(P)) F; -+(P;) F;=a;; (consts), (2. 18a)
£(3)Q; -£J,)Q; —n,;,'Q,=b,; (consts), (2. 18b)
£ F; —£(P) Q, -1, F;=c;; (consts); (2. 18¢)

now, since the constants b;; must be skew-symmetric,
it is always possible to redefine the functions @,(xf)
such that @, —~ @, - b;, with b,=3n7'b,,, Then Eq. (2.18b)
reads

'A(Jj) Qi—’lé(Ji)Qj=njilQ;- (2. 18b")
On the other hand, by taking into account (1.4a), the
general solutions of (2. 18a) and (2. 18b’) can be written
as follows:

Fy0d) =L (P F(xd) + (1/2N) ayyeia,

Q,(x}) =£(J;) Q(xf),
where N is the number of particles and the functions

F(x%) and Q(x}) are defined except for the
transformation:

F——F+R(x§ , f(Pj)R':O,

Q—Q+T(xf), £J;,)T=0,
Upon introducing (2. 19) in (2. 18¢) and taking into ac-
count the second relation in (1. 4a), one obtains

£(P)4F)F - Q)=c;y = (1/2N)aym, e = ayn,’s) ext
(2.21)

(2.19)

(2.20)
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whose integrability conditions give, after a simple
calculation,

(2. 22a)
(2.22h)

The relation (2, 22b) states that constants ¢,; must be
skew-symmetric, which implies that it is always possi-
ble to redefine the functions F,(x}) such that F,—~F,-c,,
with ¢, =31,*c;;. Then the second member of (2.18c)
vanishes, so that one can always assume that those
constant are zero. Then, we conclude that Eq. (2.21)
reduces to the following one:

a;; =90,

st €iy=0.

£(P)£J)F-Q)=0, (2.21%)
whose general solution can be written as follows:
F-Q=R()+T0), £(P)R=0, £QJ,)T=0.
(2.23)

Thus, taking into account the arbitrariness (2, 20), it
is always possible to choose F =@ =— S(x), and then
from (2.19) and (2.22a), Egs. (2.17) read as follows:

2S

£(P,) [pg+ 3}7] ~o,
(2. 24)
.. 23S 0. 35

£J;) [Pi + -a;z] =1 [Pz+ —87;] )
which demonstrate the first part of the theorem [con-
sidering the arbitrariness (2. 10) in the definition of
the functions p¢(x{, +*)]. The proof that this arbitrari-
ness remains [but with condition (2. 14)] is easily
obtained.

QED

We are now able to prove the main result of this
section, which is given in the following theorem:

Theorvem 2.2: A necessary and sufficient condition
for the dynamical system (1. 1) to be invariant under the
Aristotle group and to admit a Lagrangian formulation
compatible with its invariance is the existence of a
Lagrangian L(x], ¢*), such that it verifies (2. 1) and

£(P)L =0, +(J;)L=0, (2.25)

that is, invariant under space translation and rotations.
For a given Lagrangian formulation, the Lagrangian
is defined except for the transformation

L—L+4[D)S(x}), £(P)S=£J,;)S=0. (2.26)
Proof: We will show first that the condition is neces-
sary. From subsection (A) of this section, we see that
L{x{, v*) verifying (2. 1) exists. Thus, from Theorem
2.1, we have

+H)pi= EBZL;_ ; (2.27a)

£(P,) pi =0, (2. 27b)

£W,) pi=7;:"p5% (2.27¢)
with

pi= aaf (2.29)

Taking into account the invariance of the dynamical
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system under the Euclidean group, that is, the first
two relations of (1, 4b), the integrability conditions of
(2.27) read as follows:
(i 9
A EPIL=0, —5£(J)L=0. (2.29)
a a

On the other hand, using (2.28), Egs. (2.27b) and
(2. 27c¢) directly give the following relations:

—a—,-f(P,-)L=0, i,r~£(J,)L=o. (2.30)
v, v,

From (2.29) and (2. 30), one obtains
4(P) L=a; (consts), +(J;)L=b, (consts), (2.31)

whose integrability conditions require that a; =b; =0.

Next, we will show the sufficiency: We need only
show that the dynamical system is invariant under the
Aristotle group, since the symplectic form defined by
(2. 8) verifies (2. 3) and (2. 12) as a consequence of the
results of subsection (A) and of (2,25). First, one has
the following identities:

£(P;, HD =0,
f([Jj;H])xi:n]itU;_ 71,'1.17);E 0,

and, on the other hand, taking into account (2.1) and
(2. 25), one easily obtains

£((P;, B p§=0, £({3;,H)pi=0;

now, as a consequence of the second condition of (2.1),
{d, p”} constitutes a coordinate system (not adapted) of
T(IRSN) and therefore, (2.32) and (2, 33) imply

[Pj’ H] =0, [Jj} H] =0,
that is, the dynamical system is invariant under the
Euclidean group. The invariance under time transla-

tions turns out to be trivial. Finally, the arbitrariness
(2.26) is an immediate consequence of Theorem 2,1,

QED

(2.32)

(2. 33)

(2.34)

3. LAGRANGIAN FORMULATION COMPATIBLE
WITH THE POINCARE GROUP

(A) In this section we will suppose that the dynamical
system (1.1) is a PIPS, that is, such that it verifies
(1.2) and (1.4), or (1.5) which is the same, Then we
will say that the dynamical system admits a Lagrangian
formulation compatible with its invariance if there
exists a symplectic form o of type (2.2) such that it
verifies relations (2. 3), (2.12), and also the following
one:

£(K;)o =0,

that is to say, the whole Poincaré group acts as a
canonical transformation group.

(3.1)

Essentially, the new conditions appearing in this
section are (1.5¢) and (3.1), our goal being to exploit
them as much as possible. Taking into account (1. 3d)
and (2.2), Eq. (3.1) gives the following equations:
2 a_ 9 b x 208 _ﬁ_a
ox +(K;) pS o £(K;) p - 6,50 2 +6,,0° oxt =0,
(3.2a)
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t's a"’b

< %Pi s
__l — . b
x5 au} —Xj 'ﬁi o, (3.2b)
ape P’
20l ,t(K)p. 0 ka_vff +x’;§§=o, (3.2¢)
where we have used the notation
pi=(1/c" pt, (3.3)

simply to avoid false information in (3. 2b) concerning
series expansion in powers of ¢! which appear below.

The results of Sec. 2 ensure the existence of a
Lagrangian L(xi, v?), defined except for the transforma-
tion (2.26), verifying (2.28) as well as (2. 1) and
(2.25). Then, using (2.28), Eq. (3.2b) can be written
as follows:

a b) la 1—0) ZE(I/Cz)L, (3.4)
from which we deduce that
L0d, ) =L, 0, oB), (3.5)

that is to say, the “Lagrangian” I is the sum of N
“partial Lagrangians” in such a way that each of them
contains the velocity of one particle. Next, we prove
two lemmas which will be very useful in later
developments,

Lemma 3.1: The “partial Lagrangians” L,(x], %) are
defined except for the transformation (in an evident
notation):

L,~L,+Q,0d)+ S(xd),

a axak
©Q, =0, L(P,)S=4(,)5=
Pyoof: Taking into account (2,26} and (3.5), it is
easy to see that the arbitrariness in the definition of
L is given by (3. 6); not1ce however, that the functlon
Q can also depend on vi. Now, after (3.5), we have®?
= _ oL _ 2L
PTo0T al

(3.6)

(3.7

thus, taking into account the arbitrariness (2.10) in
the definition of pf, we get

3S  ale  ade

bi dx, odv, dv,  axl’ 8.8)
from which we obtain
a
2@ . (3.9)
Bv
QED

Lemma 3.2: The “partial Lagrangian” L, (x{, 1%) can
always be chosen such that

‘A(P,) za :0, 'é(Jj) Zazo,

Once this choice has been made, the arbitrariness
(3. 6) remains, but now with the condition

£(P)@,=£U,)§,=0. (3.11)

Pyoof: Taking into account {2. 13) and (3. 7), we easily
obtain:

(3.10)

-é(P)L" 0, —r-é(J)L"_O (3.12)
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Therefore, after (2.25) and (3.5), there exist functions
M2(x%) and N4(x%), such that

£(P,) I = B3 (x), ¢, HI2 =0, (3. 13a)
£(J,) L9 =Na(xh), e, Ne=o0, (3.13b)

The integrability conditions of (3. 13a) give the following
equations:

£(P,) M2 - £(P,) M3 =0,

£(3,) ME = £(P,) Ne =n, 57, (3.14)
£(3,) N2 = £43,) Ng =n,,'Ng;
this implies the existence of functions Mo(x{) and
N*(x]), defined except for the transformation:
B — N+ Re(x}), £(P,)Re=0,
fo— ot Towd), £03)Te=0, (3.15)
such that
Mi=4(P) M, N§=+4(3;)Ne, (3. 162)
£(P) £ - N9) =0, (3. 16b)

Then, after (3.13b), it is always possible to choose
M? = N°= - Q°(x}) in such a way that E“Q =0. Hence,
Eqs. (3.13a) can be rewritten as follows:

ﬂpi){iw?a)zo} , &@"=0
+@ NI+ @) =0

It suffices now to take into account Lemma 3.1 in order
to obtain the wanted result.

(3.17)

QED

Now we will use Egqs. (3.2a) and (3. 2c). The first is
equivalent to stating that functions ¥,(x,, ¢?) exist, de-
fined except for the transformation

;= ¥+ T (0)), (3.18)
such that
arze _ 0%
+(K;) p? - 8,0 pr=1- (3.19)

1

a

By introducing this result in (3. 2c), and considering
(3.5) and (3.7), we get

2

A ~
Tyl Wile T ¥) =0, (3.20)

The general solution of (3. 20) can be written as follows:
AL+ 0k, 08 =3, () + T(0B); 3.21)

hence, after the arbitariness (3.18), it is always
possible to assume the following structure for the
functions ¥;:

¥, (xi, U’Z) == x?zb + @j(xi)-
Introducing now (3.22) into (3.19), we get the equation

(3.22)

(XbLb) + ~_1_(,_cl

Py aa (3.23)

£(K;) p3 = 8;,0™pf -
Let us express the 1ntegrability conditions of (2.27a),
(2.27b), and (3.23) concerning the third commutation

relation of (1.4b) [which is strictly equivalent to (1.5c)].

In this way we obtain, after an easy calculation,
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31 LK) L+L BT, - £(D) ,]=0, (3. 24)

On the other hand, using (2,28), Eq. (3.23) directly
gives

avk[ﬁ(K )L +4(H)(AL,) - £(D) 8] = (3. 25)
After (3.24) and (3. 25) one obtains
£(K,) L=—£H)(AL,) +£(D) &, +a;, (3.26)

where the a; are constants. Now, taking into account
Lemma 3.2, the integrability conditions of (2. 25) and
(3.26), concerning the first two commutation relations
of (1, 4c), very easily give the following conclusions:

aj:O, @,(x’é) =AaX7+Xj(X§)+bj, (3.27)

where A® and b’ are constants, and the functions X;(x%)
must be invariant under translations and must behave
as vectors under rotations, that is,

'£(P,) X; =0, ‘é(J;) X; :nile; .
Hence, introducing (3. 27) into (3. 26), we get the
following equation (which will be of great interest):
£(K)) L=—4MH)(2L,) + A} +£ (D)X, . (3.29)

Now, there only remains to use the third commutation
relation of (1,4c). To do this, it is better to directly
impose the corresponding integrability condition on Eq.
(3.23). So one obtains, taking into account (3.27) and
{3.28), the following relation (the calculation is quite
tedious but easy):

£(K) X, -4 (K,) x; =£(K)EL,) —£(K) (4 L,)
+ (1/c}) A (3% = K5h).

All these results can be summarized in the following
theorem:

(3.28)

(3.30)

Theorvem 3.1 (divect): If a PIPS admits a Lagrangian
formulation compatible with its invariance, then a
Lagrangian L{x{, v%) exists, such that

Ii(xi,vi):eaza(x{;,u’;), -ﬁ(Pj)Za:./_-(Jj)Za:O’ (3.31a)
oL 3L

F‘v Saa (av:;apg)*o’ (3. 31b)

£(P)L=/((J,)L=0, 3. 31¢)

£(K,) L =—£H)YWEL,) +A,0% +£ (D) x; (8, (3.31q)

where the A, are constants and the functions x;(x%)
must verify the conditions (3. 28) and (3.30), For a
given Lagrangian formulation 0, the Lagrangian L is
defined except for the transformation (2. 26) and the
“partial Lagrangians” L, except for the transformation
(3.6).

We now show the reciprocal theorem:

Theorem 3.1 (reciprocal): A sufficient condition for
the dynamical system (1.1) to be a PIPS and admit a
Lagrangian formulation compatible with its invariance
is that a Lagrangian L(x], +?) verifying equations (3. 31)
exist,

Proof: Taking into account Theorem 2.2, we must
now only prove the third commutation relation of (1.4b)

J. Martin and J.L. Sanz 784



[strictly equivalent to (1.5¢}], because the symplectic
form defined by (2. 8) verifes condition (3.1). First of
all, we have the identity

'é([K:‘:H]- )x{—-e (1/62)1},1) —(l/cz)x,pa
+ <1/CZ) 2)afva + <1/Cz) xaip'a - 646; = 0’
(3. 32)

and, on the other hand, taking into account (3.31), we
easily get

4([K;,H] - P,) p3=0. (3.33)
Since {x}, p} constitutes a coordinate system (non-
adapted) of T(IR*), we get

(X,,H] =P, (3. 34)

QED

(B) Let us consider now a PIPS admiting a
Lagrangian formulation compatible with its invariance,
and let us assume that the functions pl(x], v¥), as well
as the Lagrangian L(x], v%), admit a formal series ex-
pansion in powers of 1/c with the following structure:

i u(n)t L= 2 L(n)

(3. 35)
n=0’ n=() c"

where the different terms u,‘,"" and L' are, of course,
independent of ¢. In this subsection we will study of
consequences of imposing Egs. (3.31), (3.28), and
(3. 30) on expansions (3, 35) at each order. Keeping this
in mind, we will assume that constants A, and functions
X;(x%)} admit also expansions of the type:

A,,_Z) —A‘"’ (3.36)
Let us introduce, according to
following notations:

(1. 3a) and (1.3d), the

d
HO =y Zppp @8 2 gooo = (>1),

s dv, M
KV =G, =¢, —aa—; {the generators of the pure Galilean
¢ transformations), (3.37)

(2) i 0)
K "_xajv (Uajvctz+xaj He t) a’l)

a

8
e 3y z
K(n) =—x “(n-2)i
£ ai T
“ dv,

Then Egs. (3.31), (3.28), and (3. 30) can be written at
each order as follows:

(n=3),

Zevoth ovder:

0 8L (0 aL“”
£HO) = =5
é(P,-)L‘°>=£<J,.)L<°>=o, (3.38)
L(G)LY =AD P +£ D)XV,

where the functions x; verify equations analogous to
(3.28). Let us note that (3, 38) are the known formulas
of Galilean mechanics, so that constants A{” can be
identified with the masses of the particles.

Fivst ovdey: We obtain equations similar to (3, 38),
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except that there are two terms in the lhs of the first
equation.

nth ordey (n=2):

L(u.n(xg’ v:) =€“L;"'2’(xg, v:)’ -ﬁ(Pj) LGd) =£(Jj) Lin-?) :0,

(3. 39a)

"2"1&(11"’) ; aaLm (3. 39b)

£(P,)L‘"’=-£(J,)L‘"’=0 (3.39¢)
I EEPILE = Zz £ H) L)

+A{ ) +4 (D) X, (3. 39d)

where, by definition, K{" =0 and functions x;™ verify
equations analogous to (3 28) as well as the following
condition coming from (3. 30):

é(ng)) X;n-2) —-ﬁ(K;Z)) Xi"-“

= 2 HEMELE) -£ K L)}

resan<?

+ AP (bl — 20, (3.40)

Note that conditions (3. 30} and (3. 31a) begin to be
relevant from order n=2 on.

Let us now see how Eqs. (3.39d) and (3. 40) can be
simplified, by using the arbitrariness (2.26) and (3. 6)
[with (3.11)) in the definitions of L and L, respectively.
To do this, it is easier to handle directly the exact
equations (3. 30) and (3. 31d), which, taking into account
the mentioned arbitrariness, can also be written as
follows:

L(K,) L =-LH)X(L, - A)] +£D)x, - x°,), (3.41)
LK) (X, - Q) —£ (K (x, - 2G,)
=‘£(Ki)[ﬁ};(zb“Ab)]'f(K;)[xg(Zb—Ab)]- (3.42)
Equation (3. 41) at orders n > 2 implies
§ é(K}”)L“’:— ‘2 , -E(H('))[x?(Ll(,S) _A;s-Z))}
+£ D)™ - Q). (3.43)

Furthermore, Eq. (3.42) at orders n=2,3 and n >4,
respectively, implies

'é(KEZ)) X§"-2) _.é (K§2)) Xgn-2)
=£ GG L™ - A7) -£ G Ly - AP™)]

+ASD (b ed - xleh) (=2,3),

(3. 44a)
_£(K$2))(X§n-2) _- XI;Q(b"A,)) __£ (K§2))(x(in-2) _ xbngn-M)
— E {ﬁ(x(r)) (L;‘S) At(’sd))]
risenal
- £ K [KG (L - AT (n=4), (3. 44b)

Now, taking into account (3.6) and (3. 11), it is easy to
see that the functions ¥}@{" are invariant under trans-
lations and behave as vectors under rotations in the
same way as the functions x('" Hence, and according
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to (3.43) and (3. 44b), it is always possible to make the
following choice:

Q"D =xi" (m>2), (3.45)

which is equivalent to setting the functions X} (1 > 2)
equal to zero in Eqs. (3.39d) and (3.40). On the other
hand, the Lagrangian is always defined except for an
additive constant and the same also happens with the
“partial Lagrangians”; hence, it is always possible to
carry out the following transformation:

L;"'z) —’L;"'Z) +At§n) (n> 2)’ (3.46)

which is equivalent to making the constants A™ (n=>2)
equal to zero in the initial equations (3. 39d) and (3. 40).

Summarizing the previous results, we can say that
Egs. (3.39d) and (3. 40) reduce to the following:

2 KLY == 25 FH)ELT) k>2),

res=n r+s=n-2
(3.394d')
-é(K§2>)X§"’2’ £(K(2))X(n-2) =4(G,) (x’?Lf,"'z’)—£(Gj)(x$’L,(,"'2’)
FATD (0 - 008 (n=2,3)
(3.40a’)
E 2{7£(K,5”)(x’,’L,§S’)—vé(K}")(x’;L,SS’)}»:0 (n=4).
(3.40b’)

These formulas will be fundamental in the last section
of this paper.

4. NO-INTERACTION THEOREM AND EXPANSION
IN 1/c

As we have said in the Introduction, from a theorem
by Currie, Jordan, and Sudarshan® the only PIPS admit-
ting a Lagrangian formulation compatible with their in-
variance are those such that pi(x, 2%) =0, that is, the
free particle systems. In this section we will carry out
a proof of the theorem which has the double advantage
of its great simplicity and its particular adaptation to
the analysis of the expansions in 1/c.

The conditions which allow us to get the no-interac-
tion theorem are (1.5c) and those expressing the in-
variance of the symplectic form ¢ (2. 2) under the one-
parameter groups generated by H and K,, that is,
the conditions (2.3) and (3. 1) or, equivalently, the set
of equations (2.4) and (3. 2}. After (2.4b) and (3.2b)
one easily obtains

ap, =0 (a'#a).

S (4. 1)

A result that, taking into account (2. 4c) and (3, 2¢) re-
spectively, gives the following relations:

op  apt _ au™ opt
oby P SE OP 4.2
axt  axd. 2wl 9k 4.2)
(2B ops I U™ 8p?
a (&g _ ZHi e A = .
1 <8x’,, 2xi, +-£(G) vl 1 avi, vk 0, (4.3)

from which one obtains, by introducing the first one in
the second,

)au ap,

—4(G,) 2Lt

o (4.4)

T
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On the other hand, taking the derivative of (1. 5¢) with
respect to v}, one obtains the following:

a’ a a“ai
?(xj ~ ) axl
—406) 27 L gt 2 o 51-;;
1 A a“ a“ai
2 @vf- o) e +_’(xf fop) SE av k3
1 o 0
'_"[ “v"k a{; (4. 5)

From an exact point of view, Eq. (4.1) is also valid
for the functions p$, so that the right-hand side of
(4. 4) vanishes and hence we have

apl
g
avl, =0, (4.6)

because 0 is of maximum rank. Taking now (4. 6) into
{4.5), we get

LI

o (4.7)

Equations (4. 6) and (4.7) already state that there does
not exist interaction among the particles, so the no-
interaction theorem can be considered as proven. The
vanishing of functions u,‘; can be proven very easily
from conditions (1. 5), that express the invariance of
the dynamical system under the Poincaré group.

Rewmark: Actually, it can be shown that relations
4. 6) and (4. 7) are exclusively a consequence of condi-
tions (2.3) and (3.1), that is, in a strict sense, it is
not necessary to use the invariance of the system to
conclude in the no interaction of the particles, In order
to simplify the calculations we have not followed this
method here.

Now let us consider the approximate point of view,
that is, the one consisting of the study of implications
of (4.1), {4.4), and (4.5) on the different orders of
approximation in expansions of type:

= 4 -
=X pite =3 ul, @.8)
At nth order (n>2) Egs. (4. 1) and (4. 4) give the
relations
ap('n-‘Z)a
a1 =V
a’Uar (4. 9)
) au(”” aply apm
G _ N0 — ) i
(x, x,) 2 Bv Bvak £(GJ) avi, ’

7+s=n=2

so, once the order of approximation is fixed as n=> 4,
the following condition must be verified:

a“‘(‘r—)-t—o (r=0,1,.

oy (4.10)

ce,n—4)
having assumed only that the symplectic form 0 is of
maximum rank at zeroth order. Now, taking into ac-

count (4.5), it turns out, after (4. 10), that for an order
of approximation » > 6 one also has

{s)
au,s i

=0 (s=0,1,... (4.11)
ox!

,n—6)

at
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From (4.10) and (4. 11) one arrives at the conclusion
that, beginning with the order of approximation n = 6,
the interaction among the particles in the nonrelativis-
tic limit (classical) vanishes, that is, that in a context
of approximation in 1/¢, the no-interaction theorem

of Currie, Jordan, and Sudarshan starts to be really
effective from order 1/c® on. Hence, one expects to be
able to find approximate Lagrangians up to order n=5
having a “freeless” classical limit and giving relativis-
tic invariant dynamical systems, those Lagrangians
being compatible with the symmetries.

5. APPROXIMATE LAGRANGIANS UP TO ORDER 1/c*

Our goal is now to use the results of subsection (B)
of Sec. 3 to obtain a family of approximate Lagrangians
up to order 1/¢* having all the desirable properties,
corroborating in this way the conclusions of the preced-
ing section. To make the calculations easier, we will
restrict ourselves to the case of fwo particles and we
will assume that the classical limit is Newtonian, that
is,

(5.1)

where m, is the mass of the particle a, #} is the square
of the modulus of the velocity of this particle, and V{y)
is the interaction potential, » being the distance between
the particles, that is, with obvious notations:

o1, 2.1 3
L™ = 3myof + gmyvi - V(#),

r=+ &)V x=x -x, (5.2)

We will also assume that in the approximate Lagrangian
we are looking for, the odd orders do not appear; this
is perfectly compatible with all the required conditions.

Taking into account expression (5. 1) for L', Egs.
(3.38) (zeroth order) yield the following relations:

0)i _ 41303 Vi i o= d
Follzamy " == — g (-=

el E SR i
a 7 dr’ xaa'_xa_xa')’

Aa(O) =My~ MgX, xffO) = XX

(x =const; ny=1, ny=-1),
(5.3)

which means that the “force” between the particles is
of Newtonian type at this order as was expected.

Let us go now to the order n =2, According to
(3.39a) and (5.1), we have

L = 4m,ok — 4V(r) +0,Q0); 6.4)

therefore, taking into account (5.3), relation (3.40a’) |

holds identically and, on the other hand, Eq. (3.39d’)
can be written as follows:

£(Gj)L(2) =—£(K;2))L(0) —é(H(O))(;\}]’-L;m)

= {% g [(xvy) + (evy)] + g[(xﬁ) - (xvz)]} X

+{3md +3V0) - @)} vy,

+{Emyvd + V() + Q) vy, (5.5)

whose general solution, after (3.39c), is the following:
LP =3myvh +smyvh + 1} + 0d) V(v)

_L

= [(cvy)? + (0, ] V() - (0} = o) Q)

>

- o v - (V)21 60 + F(r, 5,09), (5.6)

where F is an arbitrary function of its arguments, and
VEV -V = 0 = (v),

5.7

s =3(xv). 6.7

Upon introducing (5. 1) and (5. 6) into (3. 39b), one could
compute the forces at the order considered.

Let us finally deal with the order » =4. Recalling
(3. 39a) it is found that function F is bound to have the
following structure:

F(r,s,v*)=B(»)°s + E(r)
so that

(5.8)

1 .
LP =gmah+ 1ivir) - o (V) V() = Q)

-1

5TV, Q) + 13,00v,) BO) + 2EG) +1,D(v).

(5.9)

Thus, one easily sees that condition (3.40b’) holds
identically. On the other hand, condition (3.39d’) yields
the following equation to determine the Lagrangian at
fourth order

-é(GJ-)L(“ :—-A(K}”)L”’ _é(H(O))(xI;Léz’))’ (5.10)
where the identity
AKPILY =~ LHEHD) L) (5.11)

has been used. A straightforward calculation shows
that Eq. (5.10) can be written down explicitly as
follows:

£(G;) LY ={(V/49)[(xvy) 0} + (xv;) o] = (L/4PNT = T/ (0v,) Govy) [ (v) + (o) ] = S (0/9) (0v,) [ ev )2 + (xv,)2]
+(Q/27)[(xv)) vf - (xvy) 0F] = (1L/202)(§ - §/7) (v ) (xV,)(xv) = (Q/7) (vyvy) (kV) + (E/27) [ (xv,) + (xv,) ]
— (D/7)x)}x; + Gt + 22V0) = LV/P) v, = 203Q(r) — (§/27) (xv,)? = LE(r) = D)} vy
+{Emyvh + LA V() = H(V/9)(xv,)? + 303Q (1) + (Q/21) (xv,)* — LE() + D(»)} Vays

(5.12)

whose general solution, taking into account (3.39¢), is the following:
LW = oo + -{!g-mzvg + 4 (0} +08) V() = L0} + 0d) E(r) + (E/47)[(xv))? + (xv,)?]
= (/8 = V/7) kv, )t (xv3)? + (V/87){(xv0)? 14 + (xv)? 0 — (vyv,) [ (kvy)? + (xvy)? ]}
+ @/47){(xv1)? 0} ~ (xvy)? o — 20w,V (kv y)? = (xv,)? [} + (1/2492)(6 - O/ (kv )? — (v, )
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X [(xv)® - 2(xvy) (xvy) ] - (B/27)[(xv))* = (xv,)2] - (D/2)(f ~ 0}) + Hz, s, 0P),

(5.13)

where H is an arbitrary function of its arguments, By introducing now (5.1), (5.6), and (5. 13) into (3. 39b), it is

possible to compute the forces at this order.

In this way we have obtained the most general approximate Lagrangian (except for odd orders which, in fact,
are computed trivially) having a Newtonian limit and leading to relativistic invariant dynamical systems (approxi-
mate). Moreover, the corresponding Lagrangian formulation is compatible with the invariance under the Poincaré
group. On the other hand, (except for the 1/c® order) the approximation obtained is maximum.

By using a standard procedure it is easy to compute the conserved quantities related to the obtained Lagrangian,
i.e., energy, momentum, and angular momentum as well as the center of mass position. Since the calculation is

obvious, it is not shown here,
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5In this paper the usual summation convention for all indices
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of light in vacuum,
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of interactions it is possible to obtain approximated
Lagrangians up to order ¢ according to an article (as yet
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Pauri and G.M. Prosperi, J. Math, Phys, 17, 1468 (1976),
the possibility of maintaining the canonical character of the
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A method for calculation of Regge poles in atomic
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A method for solving the Schrédinger equation is given. It is specially developed for applications in atomic
(short wavelength) collisions. The method is also useful for calculating Regge poles, without having to
define the potential for complex coordinate. The stability of the method is discussed.

1. INTRODUCTION

Studies of the Regge poles is essential for under-
standing the behavior of differential and total cross
sections in atomic!=® and short wave length collisions.
However, there are very few techniques for the calcula-
tion of such poles. The main reason for the lack of
methods lies in the numerical difficulty connected with
solving the Schrodinger equation. Before explaining
the details of these difficulties, let us summarize the
requirements of such a method: the method should be
fast, numerically stable, and straightforward in
application,

6,7

There are not many cases where the Regge poles are
known exactly: They are the Coulomb field,® hard
core,® and the potential well.? None of these potentials
could even reasonably approximate interaction between
the atoms, hence one should resort to numerical
techniques. However, before that one should convenient-
ly adapt the appropriate equations.

When solving the Schrodinger equation
pr=lVr) + (0 - /7 - e =10y (1.1)

for atoms, the first difficulty comes from the large
number of integration steps. Since f(r) is usually large
and negative, hence the solution ¥ rapidly oscillates, the
step length of the numerical integration procedure is
small, In such a case the number of steps, hence the
accumulation of the numerical error, is noticeable.
Therefore, one should not integrate (1.1) since that
would considerably slow down the numerical calculation.

Let us explain the source of numerical instabilities.
The wavefunction is in the asymptotic region » — = of
the form ¥ =a exp(ikv) + b exp(- ikr). For an arbitrary
complex A from the first quadrant, the coefficient a is
large while b is small.® When integrating (1.1) we
therefore find that the solution 3 is approximately
aexplikr), to within the numerical error, Since the
Regge poles are the complex roots of d in the variable
A, it is clear that we will be unable to determine when
the component with exp(- ikr) is exactly zero.

Two interesting procedures have been proposed to
remove this difficulty. One is based on the exact solu-
tion of (1.1),? and the other uses the WKB method, 1912
Several other techniques!® do not take into account the
specific problems of atomic collisions.

Perhaps it would be proper at this place to comment
on these two methods. The coordinate-rotation method®
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is based on the idea that by integrating (1.1) along a
convenient path in the complex v plane, the dominant
component of § becomes subdominant, i.e., we obtain
¥ in the asymptotic region having a exp(iky) small and
b exp(~- ikv) large. In such case it is easy to determine
when b is zero.

However, there are major objections to this method.
It is obviously not fast, since the wavefunction is inte-
grated. Furthermore, in the complex coordinate plane
one solves four coupled equations. It is not numerically
stable because of the accumulation of errors due to
the large number of integration steps. It is also not
straightforward because for the potentials not having
simple form, ¥ continuation into the complex coordinate
plane is not trivial. One should also notice that in the
complex » plane the physical picture of interaction is
lost, hence it is not easy to deduce what part of the
potential curve is responsible for the observed features
of scattering cross section, This point is essential for
the inversion of the differential cross section
procedure, 1

The other method, based on the WKB approximation,
also has drawbacks. Perhaps the biggest is the difficulty
in understanding the behavior of complex turning points
of f(¥). Since this requires analytic continuation of
V(r) into the complex 7 plane, the method is also cum-
bersome in application,

In this article, the problems just mentioned are cir-
cumvented by defining a different approach to the
Schrodinger equation. Instead of solving (1,1), the equa-
tion is transformed to a nonlinear form, the procedure
somewhat similar to the method of Calogero, %38 It ig
shown that solving such an equation is easier, since the
basic solution is nonoscillatory, and calculation of the
Regge poles is numerically stable. Some very useful
approximations are also obtained. The potential does
not have to be continued for complex #, therefore the
method can also be used when V() is tabulated {pro-
vided we fit points locally by a polynomial), However,
there are two major objections to this method. The
derivatives of V(») should be calculated and the Hankel
functions have to be very accurately given,

2. FORMAL THEORY

It can be shown'® that solving (1, 1) provides more
information than we actually need for calculation of the
phase shifts and the poles of the S matrix, The S
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matrix, it was shown, ¥ is given by
H®kry) [[HE(kry) 1 rX
S\ k)=~ =% R N ——
W8 == Bt BB Ery) T oy ~ vy " E ) /

HY(kr,) | 1 A X):,
(H,L“!(km) + 2kry  kry Yl

(2.1)

where 7 is the value of ¥ from the asymptotic region
where the potential is small or zero. The function X
is the logarithmic derivative of ¥, and H{" (z), n=1,2
are the Hankel functions. !® Therefore, for a complete
determination of the S matrix, only the logarithmic
derivative ¥’/¢ is required and not ) and ¥’ explicitly.

The inverse of X, designated by Y, is a solution of
the equation

Y =1-fY?, (2.2)

which is obtained by taking the derivative of X=1/Y
=9’/% and using (1.1). The difficulties of (1. 1) have not
been removed by defining (2. 2) but they have become
even more complex since Y is infinite whenever ¢’ =0.

In the next step one defines a transformation on ¥
such that the oscillations and singularities of ¥ are ex-
plicitly incorporated in the known functions., Such a
transformation is!

Y:]ﬂ% tanh(F/%2).

(2.3)
However, here we follow another procedure. The wave-
function ¢ is first replaced by ¥ =f-1/ %@, which is in
accordance with the WKB approximation.

Therefore, we have for ¥
Y=1/(~f"/4F+£%/u),

where u= @/ and dp/dt =@. The variable ¢ is defined
by dt/dr=s?. The equation, which the function u satis-
fies, is obtained by taking the derivative of (2.4) and
using (2.2). We get

(2.4)

n=1-(1+Q)u?, (2.5)
where
_1 (. 513)
Q“‘—4?7 (f - 4f . (2.6)

Equations (2.2) and (2. 5) explicitly show the sym-
metry between Y and u# because they satisfy the identi-
cal equation. We obtain (2.5) by replacing » with £ and
f by 1+@Q, in the equation for Y.

The quantity @ is called the “index of quality” and
was first introduced by Kemble. ?® Its value is small
compared to 1, but near the turning points of f it goes
to infinity. However, there is a qualitative difference
between this @ and the index of quality defined by
Kemble. The index of quality here does not go to zero
for » 0, as it should. Instead it goes to a finite small
number. The difference is in the definition of £ in (2.4).
Kemble defined f by f=V +1%/#* — g, while here it is
given by (1.1). One might therefore expect difficulties
for ¥ — 0, but it should be pointed out that this method
is developed for integrating the Schrddinger equation
in the oscillatory region. In the tunneling region near
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the origin, one can integrate the equation for Y {or any
other) without any difficulties, and when well away from
r =0, transform to the equation for «. The advantage of
(2. 6) is that for » —« the index of quality goes to zero
much faster than that defined by Kemble (see the
Appendix). Hence, the quantity @ here is primarily de-
fined to be useful in the asymptotic region.

The solution of (2.5) is of a similar behavior as Y,
Therefore, we define a new function E, in analogy to
Z from (2. 3). We have

U= T+1—Q)177 tanh(E) (2.7)
and the equation for £ is
_ 1/2 ‘5 :
E=q+Q 2+ 50 sinh(2E) (2.8)
or
’— 1/2 Q@
E'=[f1+@)1/ %+ I0+Q) sinh(2E). (2.9)
One uses the inverse of (2.7),
1/2
polp 1 +Q)  u 2.10)

2711+ u’
to obtain E from u,

It is interesting to notice that (2.9) also fails near
@ =-1 in addition to f =0, Therefore, we apply Eq.
(2.9) for the case Qi< 1,

3. DISCUSSION OF THE FUNCTION £

Let us now discuss Eq. (2.9). We take that the varia-
bles £ and X are real, hence f and @ are real too.

In the oscillatory region we have f< 0, therefore
the solution E is imaginary and !sinh(2E)! is less than
one. Hence, the first approximation of E is integrated
from

s=lr+ @72 (3.1)

and the solution is nonoscillatory (a similar result
is obtained when one integrates the equation for Z 1¥),
The approximation E; is in error to the exact solution

by
E:E0+e (3e 2)

and to get an estimate of ¢ we replace E in (2.9) by
(3.2), If higher than the first powers of e are neglected,
the resulting equation for e is linear,

[sin(2E,) + 2e cos(2E,)], (3.3)

o9
€TTI1-9)

and the solution, with the initial condition e =0 at » =,
is given by

__ Y[, e
e——4f dr 1__Qsm(ZEO)

]
1/' Q'
X - ”n
exp( 5 dr -0
”

In Eq. (3.3) and (3. 4) we have replaced E, by iE;, @
by — @, and e by ie.

(3.4)

cos(2E0)> .
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The error e is small because @’ is small. Also,
since E, is large, the integrand in (3.4) rapidly
oscillates. The integral (3.4) in average tends to
zero, therefore e is small indeed. A nice thing about
e is that it contributes to E absolutely. A direct con-
sequence of this is that integrating (2. 9) is numerically
a stable procedure. Discussion of Z has shown that
explicitly. 13

Let us now specify f to be positive and large. The
solution E is now real, In the first approximation we can
assume that E is small, therefore Eq. (2,9) again re-
duces to (3.1). We conclude that the solution is positive
and rising until reaching such value that the product
exp(2E) @’/8 is comparable to /%, (When @’ is positive,
it is obvious that E is positive and rising without the
bounds. ) This is usually a large number since @’/7/?
is small, When E is large and positive, Eq. (2.9) then
approximates

Ej=lra+ %+ —————~8(1QJ: gy SXP2Ey) (3.5)
and the solution E; is given by
exp(— 2E;) = exp(- 2£) (exp(— 2EY)
1 (7 ’
- Zf exp(2e’) 1o dr') . (3.6)

(D)
where £ = f:o[_f(l + @) 2drt and E® is the initial value
of Ejat » =17

It is interesting to notice that (3.6) was derived
independent of the value of @, because the accuracy
depends essentially on the value of Ey,. There are, how-
ever, three cases when @’ > 0, which need to be con-
sidered: (a) when the integral in the bracket is smaller,
(b) when it is equal, (c¢) when it is greater than
exp(— 2EY%. In the first case, the solution E, is approxi-
mately E0=E°+ £, therefore it is positive and rising.
When the integral equals the first term, the bracket
is zero( the second case) and E, is infinite, therefore
Eq. (2.9) does not have a solution. In the case (c) the
solution for E, is complex, i.e., shifted from the real
axes by ¥im [one can notice from (2.9)/(3.5) that E/E,
is arbitrary to an imaginary term, which is a multi-
ple of 7.

When the integral in (3. 6) is negative, the solution for
E, is always real. It is also interesting to notice that
when the integral is much greater than exp(- 2EY), the
solution E does not depend on the initial conditions at
v =7y, In this case, we have

E,~t- 3ln (— %f exp(2£’) ng dr') .
"y

Let us now estimate the error to the solution of (2,9)
made by the approximation E;. We put

(3.7

E:E0+e (3.8)

and following the same procedure leading to (3. 3) we
get the differential equation for e,
QI
el — A +0) [e cosh(2E) - L exp(~ 2E9]. (3.9)
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The solution of this equation, with the initial condition
e=0at r=r,, is

N O A
e_—gf ar 110 exp{~ 2E)

70

(3.10)

X 1 /r @ osh(2E,) dr”
exP {3 1+q © 0 :
-

The last equation is simplified if cosh(x) is replaced
by the approximate value exp(x)/2. We get

e=—3exp(2E, - 2¢)

(3.11)

r Q’
! - ? ?
x/ dr 1+0 exp(— 4E} + 2£),
o
where the solution (3.6) was used. Since E, is approxi-
mately equal to &, the result (3.11) shows that the error
e is indeed small,

In the conclusion we say that (3.6) can be used as the
approximate solution of E, but the error e should be
evaluated before that. It should also be borne in mind
that (3. 6) is valid if E; is large.

So far the assumption was that A and £ are real. Let
us now make A complex in the first quadrant. In the
previous analysis of £, we have nowhere used f ex-
plicitly (only through @), therefore we can apply that
discussion to this case as well, however, with certain
modifications. Thus for example, the approximation
(3.1) works if the real part of E is small by absolute
value, and the approximation (3.6) works when the real
part of E is large. In both cases one should calculate
e to have an exact estimate of the accuracy of the ap-
proximation £y,

Very often Eq. (2.9) is solved numerically. The
analysis of the error e !® shows that the numerical
procedure is stable to the variations of the step length.
A modestly advanced numerical algorithm would give
good results. However, care should be taken when being
in the vicinity of a singular point of E,

4. CALCULATION OF THE S MATRIX

The S matrix is given by (2.1). It was shown, in the
previous section, how to calculate X. Let us now show
how one uses this result to calculate the S matrix. From
(2.7) and (2.4) we have

i L

T 4f tanh(E) (¢.1)

For complex A, the real part of E can be large. There-
fore, we replace tanh(E) by

1

tanh(R + ¢I)

_ 2 exp(-R) 1-¢tan()) (4.2)

exp(R) + exp(- R) tanh(R) + i tan(l) :
and the function X is
__r 1/2
X=- +{ra+@)]
172 2exp(-2R) 1 - itan(l)

+lrt+Ql exp(- 2R) + 1 tanh(A) +7tan(@ *@ &9

where R=Re(E) and I =Im(E),
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Let us pay attention to H{"/H{™, n=1, 2. It is shown
in the Appendix that the ratio of Hankel functions can be
approximated by

HUz) 1 7

Hl" (z)__z_—g-z— 4f0

= (1A + Q1M+ 0(Q4/4), (4.4)
where
AL
fo==r* -1
and
AL it
Q= i oI {4.5)
Therefore, the denominator of (2.1) is
p=n@+0(¥)-2la+am
exp(- 2R) 1 - itan(l) (4.6)
exp(- 2R} +1 tanh(R) +itan(l) ’ :
where we have defined the error 7 by
16 =fg - £ - Flar @A s @t @

Usually, the errors n and O{0’/4) are small, therefore
the denominator D is mainly determined by the last
term

exp(- 2R) 1 -itan(l)
exp(— 2R) +1 tanh(R) +itan(l)’

D=2+ @ 3.8)
This is the case when X is real or complex with a small
imaginary part., However, when R is large, then the
last term in D competes in magnitude with 0(Q’/4) and
1. We distinguish now two cases: (a) when 7 is larger
or equal compared to O(Q’/4); (b) 7 is much smaller
than O(Q’/4). In the first case it means that D, hence
S(x, k), depends on the form of the potential at Y="7y,
since 7 is potential dependent. We can do two things to
remove this difficulty. One is to take 7, further out to
make V(r) even smaller. The other possibility is dis-
cussed in the Conclusion,

In the case (b) the term 1 can be neglected and D is
given by (4. 8) plus the remainder 0(Q’/4).

Using (4.4) in the numerator of (2.1), we have
N==2[f(1+Q)/?

exp(~ 2R) 1 - itan(l)
X <1 * exp(—2R) +1 tanh(R) +1i tan(I))

(4.9)

where the errors 7 and 0(Q’/4) were neglected., They
are always much smaller than the leading term f}/2,
provided that 7, is in the asymptotic region.

For almost real A the numerator N is

_ exp(E)
N=-{f,(1+@yli/? Snh(E) (4.10)
hence the S matrix (2.1) is
SO, B)~ - —%ﬁ%’-”— exp(+2E). (4.11)
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However, when R is large the second term in N is
small and we have for the S matrix

HP (kry) 2lf,(1+Qy)/?
HO(kr,) D ’

where D is given by (4. 8) plus the term 0(Q’/4).

S\, k)=

(4.12)

The Regge poles are now calculated from the equation
D=0 (4.13)
for complex A. However, the procedure is not as
straightforward as one might expect. We will shortly
come to this point, but we will now discuss the last
equation.

For a complex angular momentum, with small
imaginary part, the approximation (4. 8) works well.
However, Eq. (4.13) can only have a solution if R — =,
therefore, in a small neighborhood of the almost real
Regge pole, the approximation (4. 8) is no longer valid
and O(Q’/4) and 77 should be calculated. Usually, this
is not the case. Namely, in such a close vicinity of the
Regge pole, where O and n are becoming significant, the
value of X is very near to the root of Eq. (4.13). There-
fore, in practice we can take that value for the Regge
pole,

For the Regge poles away from the real axes, the
approximation (4. 8) is no longer useful and one has to
take 0(Q'/4) into account. However, one should inspect
before that, whether  is small. Otherwise, 7, should
be taken further out.

5. SOURCES OF INACCURACY

There are two major sources of the inaccurate re-
sults: numerical and inherent in the theory. The two are
mutually interwoven, because the equations resulting
from the theory have to be solved numerically. We are
not going into the details of the numerical procedures
for solving the equations, because something similar
was done for the function Z,!® defined by (2.3). In short,
Eqg. (2.9) is convenient for solving numerically since
the basic solution is nonoscillatory.

More important are the sources of inaccuracy direct-
ly incorporated in the theory. For this reason, we have
to analyze every step leading to the final result, the
S matrix,

Let us first discuss the case when X is almost real.
Solving Eq. (2.9) is no problem in the region where
Q1< 1. However, it would perhaps be more convenient
to use (2.9) in the oscillatory region while integrating
(2. 2) in the tunneling region and around the turning
points of f. The discussion following (3. 6) showed that
E can have logarithmic singularities in the tunneling
region, but ¥ can only have one first order pole. Inte-
gration of (2.2), therefore, gives better chances of
success. Anyhow, one should not have difficulties in
obtaining the accurate S matrix.

A very serious source of inaccuracy is cancelation
of the significant figures, This occurs in (4.6) for a
complex X with a large imaginary part. Let us see that
more closely. When R is large, then D is

D~0<9"> - % (71 + QT2 exp(- 2E), (5.1)

4
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where we have neglected the term 7. Let us use (3. 6)
as an estimate for E, in which case D becomes

D~0 (%—') - % LA+ QR

X (exp(— 2E%) -~ %fexp(zg’) 1(-25-'Q dr') exp{~- 28).
7y
(5.2)

Since the real part of £ is large and positive, the inte-
gral in D is dominated by the value of the integrand near
the upper limit. By comparing the leading term of the
integral from (5. 2) with O(Q’/4) from the Appendix, it
follows that that these terms cancel. If exp(- 2E%) is
much smaller than the value of the integral, there will
be cancelation of the numerically significant figures of
E. By putting the leading term of 0(Q’/4) into Eq. (5.1)
we conclude that Eq. (2.9) gives accurate results for
the S matrix if in the asymptotic region we have the
inequality

QI

exp(- 2R) > AT\ (5.3)

However, when the approximate equality holds, then a
cancellation in D is expected. Hence the region of the
X plane beyond this point cannot be reached by the

solution of (2.9). It is the “forbidden region” of (2.9).

One should notice that when the terms in (5. 1) cancel,
the error 1 becomes an important contribution to the
$ matrix and 7y should be taken further out.

Another serious source of inaccuracy is calculating
0(Q’/4) from (4, 4). The left-hand side is calculated
exactly (e.g., from the asymptotic expansion of the
Bessel functions?!®) and from that the right-hand side,
without O(Q’/4), is subtracted. The remainder is O,
Therefore, if the right-hand side of (4.4) accurately
represents the ratio of the Hankel functions, say to
eight significant figures, then the Hankel functions
should be accurately given to 12 figures if the final re-
sult is expected to be accurate to four figures, Such a
difficulty appears when the Regge poles with large
imaginary part are calculated, when the representation
(4. 8) is no longer accurate. However, this problem
can be circumvented since the properties of the Hankel
functions are very well understood. Also, O is inde-
pendent of the form of the potential, therefore, we as-
sume that calculating O is a standard procedure, but
not unimportant

A source of inaccuracy is also calculating 7. It is a
minor difficulty, because when the potential is much
smaller than the centrifugal term, any function of ¥ can
always be expanded in the powers of V/f,.

6. GENERALIZATION OF THE THEORY

Let us have a look again at the steps leading to the
equation for E. We have a function Y satisfying the

equation
Y'=1-fY?, (6.1)

where Y was given as the ratio Y=¢/¢’. Then, we
defined ¢ =7 %/ %@ and replaced » by & = o S/ dr, to ob-
tain an equation for u, defined by u=¢/Q,
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u=1-(1+Q)#,

where now the derivative is with respect to the variable
£. The index of quality @ is defined by (2.6). Formally,
Eq. (6.2) is identical to (6.1) except that 1+ @ plays

the role of f and £ is the new coordinate. Let us now
repeat the steps, with (6. 2) being now the “input,” i.e.,
we define ¢ = (1+Q)V*w and E= 7 (1 +Q)V/*d¢’. The
equation for v=w/d is

b=1-(1+Q)v*,

where the asterisk is the derivative with respect to £
and

(6.2)

(6.3)

00

1 5 312
For v we define E by the relationship
‘U:(—l—;lQ—)m tanh(E_), (6. 5)
and the equation which E satisfies is
a - 1/2 6 3
E=(1+Q@)"*+ M+Q sinh(2E) (6.6)
or
’_ 7 Q' .
E'=[f1+Q)1+ @)/ + 7Y sinh(2E). ®.7)

The new index of quality € is now given in terms of the
¥ derivatives as

— 1 f_, ’ r_ S ’
=i or (‘ 7 9T T @ ’2) °

{6.8)

By using the transformations made on the way to v,
we can also find the relationship with X, which is

__f Q" [fa+q)]/?
X=-g -1+ = .

The formal derivative of Eq. (6.7) can be repeated
indefinitely and the result is always an equation of the
type (2.9). The leading term of such an equation is

Fo=[f1+ Q)1 +Q) - (1+@)I? (6.10)
and @, is defined by

_ 1 dQuy _ 5 dQ, 4 j
Q" - 4(1 + Qn-i) [ dgn-?. 4(1 + Qnd’ (dgn-Z ) ’
(6.11)

{6.9)

where

bz = [, 0 Fi2ar, (6.12)
Therefore, Eq. (6.7) brings nothing new into our
previous discussion of (2, 9) except that with each step,
as it will be shown shortly, we get more information
about the S matrix, Whatever has been said about (2. 9)
applies equally well to (6.7) and all the subsequent
equations. However, at each step @, gets more compli-
cated and also higher derivatives of f are required.

An estimate of O, introduced in {4.6), brings more
light onto the purpose of going from (2.9) to (6.7) and
further. We will show that Eq. (6.7) gives more infor-
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mation about the “forbidden region,” discussed in
Sec. 5.

Let us firstly prove that a general transformation
from X to u, is of the form

x—-L__@ _..__@& | F

T4 Tai+) T T EA+q) ﬁ’ (6.13)

where @; =@, @, =@ and F, is given by (6.10). The
equation for #, is

Uy =1~ (1+Q,.q) %, (6.14)

where the derivative is with respect to £, = ["F, dv’.

We prove this by total induction. It is obvious that
(6.13) and (6.14) are valid for n=1. Now, for a general
n, we make the identical transformation leading to
(6.9). Namely, we define u, =<p,,/q?),, and replace ¢, by
@, =1+, " *w, to obtain

3 *
1 Q >
— e — Xl 1/2 Wy
u,  41+9Q,.,) + 1+ Q) 0, (6.15)

where now the asterisk is a derivative with respect to
£,..4- We put relationship (6. 15) into (6.13) and get

P @ .G, Fuy
4  4(1+Q) 41+Q,,1) gy ’
where we have used the property that

4 _4d
"dg,  dr’

A formal derivation of the equation for u,,;, by using
(6.14) and (6.15), leads to

X' = (6.16)

F

g =1 = (1+ Q) 1y, (6.17)
where

_ 1 20 5 o 2
Qi = A+ Q) <Qm BT (Q,,.,)) . (6.18)

We have obtained the equations identical to (6.13)
and (6. 14), therefore, we have proved our statement.
By repeated transformations of the original equation
for X we can get (6.13), where #, is the solution of
(6.14).

Let us now estimate the remainder, defined by

HO@) X 1 _ f Q4 _...__ Qb
af, T TA+Qy) 20+ Qo)

HYz) "z 2z
+ Fou(1+ Qpuuy)* * +0,,
(6.19)
where @ (z) =Q(z) and z =Fkr.
From the equation for u,, it is easily proved that ¢,
defined by u, = ¢,/@,, is the solution of
Po=(1+Qpy) 0y (6. 20)

As in the Appendix, Eq. (6.20) is solved by iterating
the appropriate integral equation. Following the same
procedure, this equation is

@, =exp(t,) + [ sinh(E, - £)) Qo1 9, dES (6.21)

which gives, to the second order in @,,,, for the ratio
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Pr/ Pns

o ln

':Sn =1+exp(- 25n)f exp(2&]) Q. dE! (6.22)
or

%L = (1 + Qont/2 + @t/ (4F ) Fo, - (6.23)

Since ¥ is related to ¢, by the relationship § =Fgi/%q,,
which is easily proved by forming the logarithmic
derivative of  and comparing it with the right-hand side
of (6.13), we obtain

VoSO ... Q.

U T At T A+ Q) T T A+, T
+ F,@oni1/2 + @hna1/4, (6.24)
which is equal to (6.19) with the remainder being
Oy = Qlnr/4. (6.25)

Let us estimate the order of magnitude of (6,25) in
the asymptotic region for z> Ixi. Such an estimate is
important since it is not obvious that the repeated trans-
formation procedure of the type (6.15) will converge.
For that, we firstly develop @, in the inverse power
series of z, and calculate the leading term,

The z derivative representation of @y, is
1 (F2 - )I ’ ” 5 I3
Q0m1 = 4F20 1 - 2Fog 1 QOn + QOn -7 (QOn) ’ (6' 26)
I -, I -

where @, was neglected compared to 1. Since F%M
=—1 and the leading term of (F% ()’ is

A -
(Ffg)~ -2 =, (6.27)
we have for @,
1/( 2M¥-1
Qo™= 7 (— —r Rt QG- -Z—(Q(),,)z> . (6. 28)

Let us assume that @g,~ 2. Then the most dominant
term in (6.28) comes from the second derivative of
@y, therefore

~ 1
Qopat ™~ 5 @l -

The initial condition at n=1, for the last equation, is
(see the Appendix) Qg =3(\* ~ $)/(22%). We solve Eq.
(6.29) by using the ansatz @, = ,27*"*, where the co-
efficients o, are obtained from

A, =~ 20,21 +2)2n+3)

(6.29)

(6.30)
with the initial condition oy =3(2% - §)/2. The solution
is

2n +3)!

o= (- 1)"”‘@;:{‘— (a-1) (6.31)

or

(27 + 3)!

Qunay ™ (= 11 g — (A2 =) 27 (6.32)

Therefore, the remainder is

(2n +4)!
g

1t is obvious, because of the factorial in the numera-

On - (__ l)nﬂ 7\2 _ %) Z—2n—5 . (6. 33)
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tor, O, is not going to zero for large n, hence, the
procedure cannot be repeated indefinitely, The series
(6.24) is of the asymptotic expansion nature. However,
since we can arbitrarily choose z, the series converges
in the limit z — %,

For n=1, the remainder is

2 1
0-0,=% (’\_T_Z- 1) (6.34)
which is several orders of magnitude smaller than
0(Q’/4), if z is large. Therefore, the representation
of the ratio of Hankel functions is more accurately
given by (6. 11) than (4. 4)., However, calculation of the
remainder (6. 34) is more difficult than before.

The inequality (5. 3) determines the boundary in the
A plane beyond which the calculation of the Regge poles
is not possible. The similar inequality applied in this
case shows that solving (6. 7) is “pushing” that boundary
towards larger Im(2) and Re()). A part of the A plane,
which was unknown to (2. 9) can be reached by (6.7),
and the procedure is stable numerically since the only
source of inaccuracy comes from caleulating (6. 34)
and 7. The procedure can be systematically applied by
going to a general @,, defined by (6.11), However,
one should be careful because the resulting series is
asymptotic

7. ONE EXAMPLE

Let us show practically how the method works and
compare the results with the known solution. The prob-
lem should be specific of the short wave collisions but
not very complex so that we loose the main idea of the
paper. It should also incorporate all the details of the
previous discussion.

Such an example is scattering on the inpenetrable
sphere, ® when the potential V(r) is

*, r< 7o
Vir)= (7.1)

0, r> Yoo

It can be shown that the poles are complex roots of

H{P(kr,) in the variable A, For large values of kr,, we

have approximately®
A, + (A2 - 2312

x,,ln—n———nz—ﬂ—— -2 i=i(n-1/4)T, (7.2)

where z = k7, Although this example is simple, for its
solution we should use all the essential points of the
theory. A more complicated example would not give
more insight into the understanding of the theory. With
V(r) being different than zero at » =7, the error 7,
defined in (4.7), should be taken into account. This,
however, does not introduce additional difficulties. Ex-
tensive calculations on the Regge representation of the
scattering amplitude has been made, ! and this theory
was used for obtaining the Regge poles, The results
show that calculation of the Regge poles by this method
is also very practical,

Let us also compare the residues, given approxi-
mately by®

795 J. Math. Phys.; Vol. 19, No. 4, April 1978

A

= . 7.3
Res(5,) = 33 = 1/a)m + (% = 2077] (1.3)
with the ones given by this theory. By definition,
Res(S,) = %m’; A= 2,) SO\, &) (7.4)
and after using (2.1), we obtain
] 1
Res(S,) = 4 1 (7.5)

ThY 4 [H,‘L:l’(kn,)]2 aD/ax, *

The derivative of D was calculated numerically.

Equation (2.9) was integrated using a standard com-
puter package. %1 When E could not produce the results,
the more accurate version of (2.9) was used, i.e,, the
function E was integrated from (6.7). The results ob-
tained by_ integrating E are designated by an asterisk.

The Regge poles were calculated from (4.13), at two
different energies. The results are given in Table I,
and they are compared with the approximate ones, given
by (7.2), In Table I we can also compare the residues
calculated from (7. 3) and (7.5), Bearing in mind that
formulas (7.2) and (7. 3) are approximate, the agree-
ment is very good.

8. CONCLUSION

A method was described for the calculation of the
Regge poles, suitable for the applications in atomic
(short wavelength) collisions. Its main feature is that
the results are obtained from the potential defined on
the real axis only. However, the derivatives of the po-
tential should be calculated instead.

Some very useful approximations were made [e.g. ,
(3.6)], being of great help if the Regge poles with a
large imaginary part are calculated. It was also proved
that for the Regge poles of this type, the only difficulty
is calculating the remainder O,, but knowing the proper-
ties of the Hankel functions, it can be overcome with
ease.

TABLE I, The Regge poles and residues for (7,1). The
columns designated by N and E are the results obtained from
(7.2) and (4, 13), respectively. The asterisk indicates that the
numbers were obtained by integrating the equation for E.

k’=10 N E

n=1 4,4805+i2,4070 4,4874 +12,4275 An
0. 3497 -0, 1824 0.3475—:0, 1788 Res(S)

n=2 5,4469+ 14,3198 5.4481 +14, 3281 An
0.2737 —10.1342 0.2736 —40. 1328 Res(S)

n*=3 6.2190 + {5, 9293 6.2195+45, 9348 Ap
0,2419—-140,1137 0.2402~10,1115 Res(S)

n*=4 6.8921 +i7, 3861 6.8921 +17. 3902 An
0.2231—-140,1014 0.2237 ~-40.1011 Res(S)

k2=100

n=1 11,9593 +43, 4814 11,9729 +143, 5088 An
0.4989 10, 2739 0.4922 — 0, 2695 Res(S)

n=2 13.4178+16.1845 13,4218+146,1943 An
0.3833-10, 2034 0.3855 =10, 2033 Res(S)

n*=3 14,5906 +48,4245 14, 5751 +i8, 4382 An
0. 3347 —i0,1730 0.3331 —$0.1727 Res(S)
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Before concluding, let us comment on the point only
mentioned in Sec. 4, The error 7, defined by (4.7),
asymptotically goes to zero not faster than V(r). On the
other hand, the remainder O,, given by (6.33), goes to
zero as some inverse power of . Therefore, the poten-
tial V(r) should decay faster for the theory of Sec, 4
to be applicable, Namely, we have assumed that 7 is
always smaller than O,, and in the case when it is not,
7y 1s taken further out to the asymptotic region. It is
obvious that this cannot be achieved if V(»)~r - for
¥ ~« because for all »,, 7 is always larger than the
remainder O,. Hence, the conclusion is that the S
matrix (therefore the Regge poles) depends on the form
of the potential at » =v,. One can do two things to over-
come the difficulty: either #, is taken to infinity so that
the form (4. 8) is used for the S matrix, or define a
cut off potential at some » =7y, !® In the first case, the
solution is not practical since integrating (2.9) to such a
large value of # is not feasible. Defining the cutoff po-
tential requires a little more attention. It has been
shown that by setting the value of V() to zero beyond
some 7‘:1’2,, the scattering amplitude does not notice-
ably change.®

On the other hand, each Regge pole with a large
imaginary part depends on the 7%, as it was shown in
Sec. 4. Such poles has interpretation in terms of the
surface waves, but only a multitude of them give rise
to an experimentally observed quantity, e.g., the dif-
ferential cross section. Therefore, a single pole may
depend on 7Y, but the contribution of all poles to the
scattering amplitude is independent of 7§. To conclude,
dependence of the Regge poles on 7Y does not a priovi
mean that the cuting off potential is wrong, It means
that various locations of the poles produce one observed
differential cross section,

APPENDIX

A special case of (1.1) is when the potential is identi-
cal to zero. If the boundary conditions of ¢ is either the
incoming or outgoing plane wave at infinity, then the
two solutions of (1.1) are!’

2'bi____‘2.1/2H;(t1)(2), d’z =21/2H§2)(Z), (A1)

where H{"(z) are the Hankel functions, and z=*kr. The
logarithmic derivative of ¥, is therefore

I 1 A H(")(Z)
=10 = = —(—g———)"‘
Xn b, 22 =z T H™(z) ’
where we have used the recurrence relation for the
Hankel functions,

=1,2, (A2)

Let us replace ¥, by
Pn :f0-1/4¢n’ (A3)
where
AR -

f():—;-z—‘l -1 (A4)

and put it into Eq. (A2). We get
fo o an®
X, ==L +A/27n (A5)
n 4f0 fO (P" ’

where the derivative of ¢, is with respect to &
= [t/ dze,
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It can be shown from (A5) and (2.2) that ¢, satisfies
the equation

Cn=01+Qy) @, (A6)
where

Mol a1l ggl
PRSI | 4
QO - 4 (7\2 %_ 22)5 (A7)

is the index of quality for the free waves. In the
asymptotic region z — =, @, goes to zero as

L33 -1)

@ o (A8)

It is interesting to notice that the index of quality defined
by Kemble® goes to zero only as @,~ —1/(4z%).

Since @, is small for large z, it is a convenient quan-
tity for developing the solution of (A8) in the power
series

Gp=a+bQy+c@i+++, (A9)

This is done by transforming (A6) into an integral
equation form. It can be shown, by taking derivatives
of ¢,, that

@, =exp(t £) + [ sinh(E - £) Qp, dE’ (A10)
satisfies the original differential equation. The advan-
tage of (A10) is twofold: Firstly, the boundary condition
at infinity is directly incorporated in the equation, and
secondly, the iteration of the equation produces a series
of the type (A9), which is absolutely convergent for a
finite @,.** The variable £ can be calculated explicitly,
but this is not essential for our discussion. One should
be careful, though, to correctly define £ for large 7,

so that the behavior of (A10) should have the same
phase as H{™ (2).

The plus sign in (A10) corresponds to the outgoing
waves, hence i;, and the minus sign to the incoming
waves.,

The first iteration of (A10) is

@, =explt £) + [ sinh(f - £) Qqexplt £)dg”,  (Al1)

and if in the interval £ < £/ <, @ is small this repre-
sentation of ¢, is accurate to the order @}. The deriva-
tive of (All), with respect to £, is

(;,, =1+ explt &) + f: cosh(t - £') Quexplx £)dt’  (Al2)

so that we can now form the ratio ¢,/¢,. Since the as-
sumption was that 1g;!<<1, the inverse of ¢, is devel-
oped in the power series of @, giving

o

¢
%=¢1+exp(¥ 25)/ exp(x 2£7) Qo dt’ (A13)

to the second order of @,. The last integral can be par-
tially integrated and we obtain

£
r_, 8 &
= exp( 2 f 267) Qudt’ =+ 51 + gy
I=exp(F e)m exp(x 2£7) QodE =+ 5 ifl

¢ 4 ?
x ————eXp(: 26) f explt 287) 7y (on ) a, (A1)
. fo' “ \ fi

0
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where it was taken into account that @, —~ 0 for z —~=,
Since the last term is much smaller than the first two,
and this is the case when z > [\], the ratio (A13) is

¢ Q , 9
T8=31s 20+ 7%7 .
Py 2 41
If we put this result in (A5) and then in (A2), an approxi-
mation of the ratio of Hankel functions is obtained,

(A15)

HMz) 1 ) f} n 1+Q (Q')
H:"(z)——ﬂ-‘-z—ﬁ_(-) _—2_—0 +0 _4Q - (A16)

The procedure can be repeated for (A13), but now
taking into account higher powers of @, The next lead-
ing term from the resulting power series is f3/2Q%/4,
and in general, we notice that the terms with @j, form
a power series for the function (1 + @) ?, therefore
(A16) becomes

HYG) 1 X f§ i ol
H™(z) 22z i 4;0 - (=rlna +Q0)]1/2+0(—49) .

(A17)
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A method of solution for the “derivative nonlinear Schrédinger equation™

ig; = — g, +i(g*q "),
is presented. The appropriate inverse scattering problem is solved, and the one-soliton solution is obtained,
as well as the infinity of conservation laws. Also, we note that this equation can also possess “algebraic
solitons.”

By using inverse scattering techniques, we have de- functions by
veloped a method for solving the equation 5
¢~ (0) exp(- i£%x)

ig; =~ gt i(g*q)., (D
exactly, which we shall refer to as the “derivative non- - 0 (i) ag X~ = (5)
linear Schrodinger equation,” or DNLS for brevity. ¢ '( 1>exp Lo
The DNLS equation has several physical applications, -
such as the propagation of circular polarized nonlinear
Alfvén waves in plasmas’~® and the propagation of r.f. and
waves in a plasma.* Exact solitary wave solutions are 0 (i?
known®® as well as the conditions for modulational sta- v~ 1 exp(it’x) w 6)
bility. 2 Here, we shall only be concerned with the solu- 1 as X~ -+,
tion when g vanishes as x ~ =+, Solutions where ¢ ap- Y- <0> exp(- i£%x)
proaches a nonzero constant as ¥ —+ % are also of in-
terest.®"® The inverse scattering for this latter case and the scattering coefficients by
shall be treated in a later paper. ¢ =ap+ b, (1)
A vgry interesting prope‘r"ty of the? soliton solutions & =—ay+ b3, (7b)
of (1) is that one can have “algebraic”’ solitons as well
as the usual sech, sech®, etc. However, these are un- where
stable in the sense that if the initial data is changed by aa+Bb=1 (8)
a finite amount, then this soliton will become either
(i) radiation and therefore disperse away, or (ii) a very We note that, for »==g*,
broad sech-like soliton. _ 0+1
. o . Bw=(3*g) e+ (98)
First we note that (1) is the integrability condition 1 0
for and
D1x+i§2v1 =qtvy, (2a) @(;)_< 0 1)4)*(;*) (6b)
gy ~ 1620, = vEU, (2b) “\t1l0
and from whence it follows that
ivy, =Av, + By, (3a) a(g) =a*(c*), (10a)
ivgy = Cuy ~ Avy, (30) Bb(E) =7 b¥(L*), (10b)
where The analytical properties of these Jost functions differ
ly slightly from the Zakharov—Shabat case.” Define
A=20%+ g, (aa) OV BV v r
B=2i¢%q ~ tq, +itrd’, (4b) p=z [ Trgdx (11)
— . 3 3 .
C=2ir+Lr+ 2§7Jq, (40) and let ;=11 eX2p(iH' - igzx) and ¢, —_—[fz exp(— iK")
when » =+ ¢g*. In the usual manner, ® we define the Jost +3iRf;] exp(~i£°x), where

R=vexp(ir), (12a)

) and also define
2)Research supported in part by the National Science Foundation .
and the Office of Naval Research, Q =qexp(-ik). (12v)
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Then (4) becomes
fi,=@Q fr exp(-iK), (13a)
fox = 2i8%f; = = 3iR_f; exp(ip-). (13b)

The reason why we have taken the above decomposition
for ¢; and ¢, is simply to obtain Eq. (13) in this form.
This is exactly the same form that naturally occured
for the Zakharov—Shabat equation. And thus from those
results, ® one can immediately know what the analytical
properties are. From (13) it can be shown® that if
folet+ el + Q. lax (14)
then ¢ exp(i&®y), Ppexp(-it®x), and @ are analytic func-
tions of £ for ¢ in the upper half £% plane. As £}~

for Im(£%) >0, we have
¢ exp(itiy) ~ (é) exp(i L°) + o(1), (15a)
Pexpl— iézx)——<(l)> expl{i %) +o(1), (15b)
and
a-exp(it) +o(l), (15¢)
where
wr=3 fxn'rq dx, (16a)
pEpt+pt=3 f_:rqu. (16b)

The zeros of a in the upper half £? plane are the bound
state eigenvalues, which we shall designate by ¢,
(1=1,2,...,2N). If ¢; is an eigenvalue, then - ¢; is
also an eigenvalue, since a is an even function of ¢.
Thus, we will adopt the convention that &, will lie in
the first quandrant of the ¢ plane, and &y, Will lie in
the third quandrant, where £y, =- &g, and #=1,2, ...,
N. At a zero of a, we have

O(&) =bydlEy).

Since b is an odd function of §, we shall define B,
=bys/ 8o = Dope1/Cone1. From these relations it then fol-
lows® (for ¢ on compact support) that

(17)

W) explit®s) = <(1)> exp(-iu*)

dg’ b(t") "
2nz/§ Fae) V&) explit ™),
(18)

where the contour C is shown in Fig. 1 and consists of
two parts, with { and all zeros of a lying between these
two parts.

Furthermore, one can give ¥(¢£) by the integral
representation

b= (?> exp[i(Z%x + u)] + f: expl(ig’s) ds

o | EK1(x, s) exp[— 7 p*(x)] ) (19)

I (x, s) exp{ip*(x)]
In order for (19) to be valid, it is necessary that

limK,(x, s) =0,

S~ oo

(20a)
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limK,(x, s) =0, (20b)

P,

Ky(x, x) = - 2q(x) exp(2i u*) (20c¢)
and for K, and K, to satisfy

(3, — 3)Ky =qL exp(2i ™), (21a)

(8, + 0L = = 31K, exp(- 1 1*)3 [ exp(= i u*)], (21b)
where

L=K, - }ivK, exp(- 2i 11*). (22)

Due to the characteristics in (21), given a g, there ex-
ists a solution of (21) which satisfies (20). Thus (19) is
valid. Inserting (19) into (18) and using (9b) to deter-
mine ¢, one can obtain, for vy >x,

K*y(x,y) =i fwal(x,s)F’(s +v)ds =0, (23a)

+Ky(x,9) + F¥(x +v) + f:K*z(x, s)F*(s+v)ds =0,

(23b)
for ¥ =+ ¢*, where
Flx )~— b(g exp(it®z) dg, (24a)
alt)
F'(2)= dF(Z (24D)

dz

In deriving (23), we have taken a Fourier transform
along the contour R shown in Fig. 1, where

J explig’L) Ae?) de =, (25a)
|, explit®L) tag =2mg(L), (25Db)
and for Im(z%) >0,
22
E’Mdg =2 exp(iz®L)6(L), (25¢)
R £-z
. ZL
3’% ¢ dt =2miz exp(iz®L)6(L), (254)
R -
Im?¥
3 plone
X
R c
X
X
Re s
R R
X
x| R
c
X
FIG. 1. The contour C and R in the complex A plane, The
crosses indicate where the zeros of a lie.
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where 6(L) is the Heaviside function. Also, since b/a
is odd in &,

b(t) o
./C‘a(é) explit®z)¢ dt =0, (26)
One can also simplify (24a) by using a(- £) = a(¢) and
b{~ &) =-b{¢). Since a is even in £, all zeros will occur

in pairs. Define A=¢? for ¢* real and

e =[b(D)/alp)iz . (2n

For the bound states, define A, =t3, =%, a =(3a/
dA) Im’: and C, =iB,/a;. Then one may show that (24a)
becomes

o

N
F(z):g,lchexp(ikkz)+§%f p(N) exp(irz) dr,  (28)

when all of the zeros of a are simple and where N is the
total number of distinct values of A,.

From (28), we see that the scattering data for this
problem is

S:{p(k)) A real; [Xk; ck]ﬁ:l}- (29)

Given S, we may construct F as in (27), then one may
solve (23) for K;(x,v), and by (20c), one can obtain
q{x) (when v =1 ¢¥).

The N-soliton solution results upon setting p(2) =0.
For N=1 and ¥ =z ¢*, letting

M=ialexplri(n/2-4)] (O<y=<m) (29a)
n= Al siny, (29p)
£=7% A% cosy, (29¢)
and
C, = 2%7 exp(2iay) exp(2nx,), (30)
then one obtains
. . exp(20) exp{— 2ic)
= A _——
q(x) exp(2i ") =+ 4A siny oxp(30) + exp(x 73’ (31)
where
B=n(x - xy), (32a)
o= X +ay. (32b)
From (16a) and (31), we have
. o exp(46) + exp(x iy)
explip’) = exp(46) + exp(F iv)’ (33a)
and thus
p=% [Crgdx=x2y, (33b)
-2
g=t4A sinyggw——}gl exp(—iu*). (33¢)

exp(46) + explx &y)

Note that, by (33b), u is given by the argument of the
eigenvalue, A;. For »=+g¢*, from (29a) and (33b), u
is given by the argument measured from the negative
real X axis, whereas for v=-g¢*, — i is given by the
argument measured from the positive, real X axis.

From (3) and (4), we can obtain the time dependence
of the scattering data, which is

ipy == 4Xp (A real) (34)
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and for k=1,2,..., N

iXg =0, (35a)

iChy = — 4N C,. (35b)
Thus from (29) and (30), we have

oy =28 cos2y, (36a)

xgr =2 4A% cosy. (36D)

Algebraic solitons arise whenever y~ 7. Letting y
=m—¢ in (29), (32), and (33), and taking the limit of
€~ 0 gives

48t (x - x) £

explip ):m> (37)
and
. 9 . +
_ 46 exp[- 20+ &% + o)) exp(- i31°/2) (3To)

[1+168%x - x) /%

In the usual manner, one may obtain the infinity of
conserved quantities associated with Egs. (1), (2) and
(3). From the analytical properties of a()), one finds
for X in the upper half A plane that

ENEAY OO 1°°d7\’_,>
a(?\):exp(zu)g ()\-A;{) exp(ga.~ ’/-wmlnaa(k) ;
(38)

Directly from (12), one may obtain lna(}) in an asympto-
tic series of 1/A. This is

Ina(x) =i i c,/ N, (39)
n=(
where
Cl) = U (403)

and for n= 1,

C,= [ 2,Qexp(-in”)dx, (40b)
where
& =-3iexplii ) R,, {40c)

and, for n>2, g, can be obtained from the recursion
relation

n=2

8, =—10,8, 1 +Q exp(=ip) Z}lg,,g,,_,,_l. (404)
P:

From (38) and (39), one can obtain the C,’s in terms
of the scattering data. For n=> 1, this is

2y

C,==i= 2 [y = (W]
(O
+§1E [: (201 d(22) Inaa. (41)

From (40), the first three C,’s are

Cy= { -vqadx, (42a)
C,=-%i ["R,Qdx, (42pb)
C,=% [-[RQ,-iR,RQ|ax, (42¢)

where R and @ are given by (11).
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The conserved quantity C,; provides the Hamiltonian

for the system (1), Let

Hy=2C, =—i [ (g7, +354") dx. (43)
Thus gradH, = (- iv_+ g%, iq, + ¢*») and Hamilton's
equations are

(Zi> = ((1) é) a—igradHl (44)

with the simplectic (} }) 9/3x. Equation (44) is (1). We
introduce the Poisson bracket

* 01\ o
(F, G) :/ gradG . <1 0) ‘d—; gradFdx.

If flg, 7] is a functional of ¢ and » and the latter evolves
according to (44), then

dl

'd—[':<H1;I>-

(45)

(46}

In particular, if I is any of the conserved quantities K
{any of the constants of the motion generated by In[a(Z)};
e.g., the eigenvalues considered as functionals of ¢
and 7, or the conserved quantities (C,)..}, then (H,, K)
=0. All the constants of the motion are in involution
and each C,, n>1, generates a flow for which all the
other potential Hamiltonians C, are conserved. The
transformations between the original variables ¢, » and
the scattering data is a canonical one in which the 2-
form [2{6g A [*6v+ 6rA [*6q}dx is preserved. When
written in the terms of the scattering data, this expan-
sion will indicate precisely which quantities are to be
action and angle variables (they will be proportional to
A, and lnaa* and the arguments of C, and p) but these
details have yet to be worked out. Each Hamiltonian is
given in terms of the action variables by (41). Note
that C; is not in the family (41). Indeed matching the
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first terms in the asymptotic expansion of (38) gives
the identity Cy=% [ grdx = i, The flow generated by
C, is merely a translation. Note that all the action
variables relate to C,, »> 1 and thus C, can be pre-
scribed independently. This is somewhat similar to the
situation for the Korteweg—de Vries equation where the
total mass [_-q dx is a constant of the motion not re-
lated to the scattering data.

Finally the flow generated by H, =~ 2C, is

¢ =(q.x = 3iqry, - 34°7),,

, 3 9 (47
¥y = (¥, + 3igr7, - 3¢°47),,

which for ¥ =+ iq provides yet another integrable model
for an integrable system of long lattice waves,

qr = (‘In’i 3q2qx + %qs)x' (48)
Note added in proof: Recently, E, Mjolhus (preprint)

has shown that these algebraic solitons occur at the

threshold of modulational instability. Also, T. Kawata

and H. Inoue (preprint) have solved the inverse scatter-

ing problem for Eq. (2) when » and ¢ do not vanish as
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Absence of ordering in a class of real liquids—Application

to nematic liquid crystals

M. Romerio
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(Received 3 October 1977)

A classical liquid, the constituants of which are characterized by an internal structure described by a
compact connected Lie group, is studied. The order parameter of such systems is shown to vanish for
dimension smaller than three. The example of nematic liquid crystals is considered.

1. INTRODUCTION

By now there are several rigorous results on the
existence or absence of phase transitions for spin lat-
tice systems. I Although the translational symmetry is
not an essential ingredient, the lattice, or more pre-
cisely the association of the spins with some sites of a
given lattice, is an important point of the existing proofs
mentioned above, The fact that the spin variables are
situated on the sites of a geometrical lattice of E® is
however, as was already mentioned in Ref. 3, only used
to allow an integration on the first Brillouin zone, de-
fined as usual relatively to the given lattice, and conse-
quently to introduce, through the volume elements of
this integration, the dimensionality of the system,

The purpose of this note is to show that for the class
of systems considered in Ref, 4, that is for a large
class of generalized classical spin systems, the argu-
ment leading to the absence of ordering, in dimensions
one and two, can be worked out without prescribing that
the spins be on a lattice, but under the very mild follow-
ing conditions.

Let R and R’ be any arbitrary positions of the con-
stituents of the system (spins or molecules, etc.). We
require that, for a given v> 0

IR ~Rll =y, (1.1)

for all pairs R,R’ of constituents.

Conditions (1. 1) being very weak, it is tempting to
consider systems where the positions {R} are no longer
fixed points of E? but dynamical variables satisfying
(1.1). In other words, we consider the case of a kind of
liquid, the constituents of which are “molecules” having
a certain internal structure and interacting with one
another in such a way that (1.1) remains valid. Such
systems will be appropriate to describe, for example,
polar, magnetic molecular systems, or anisotropic
molecules such as liquid crystals.

2. FORMALIZATION OF THE PROBLEM

To make things more precise, let us assume we are
dealing with a classical system formed of interacting ob-
jects contained in a volume VC R”, v being the dimen-
sion of the space, numbered by the elements of a subset
A of N, The configuration space T is given by

TAl

T'= X M, (2.1)
1

where each M, is isomorphic to the vector bundle M of
base R” and fibers G , n< A, all Gg, being isomorphic
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to a given compact connected Lie group G. In other
words, I' can be looked upon as the usual configuration
space for |Al (equal to the cardinality of A) of punctual
particles, where each point R, is replaced by the com-
pact group GR". Since we are considering some kind of
molecular system, we will assume that the kinetic
energy T is a quadratic form in the canonical conju-~
gates of the dynamical matrix. This restriction is not
very strong and is satisfied by many physical systems
such as molecules performing rigid rotations around
their center of mass.

Note added in proof: By this we mean that in the ap-
priate conjugate coordinates, for whichdg; <+« dg, is a
G-invariant measure. T is a quadratic form in the p;
only,

Within this assumption on T, which will be done
throughout this paper, the absence of ordering will not
depend on 7, but only on the interaction part of the
potential, to which we now restrict ourselves.

Let H{A) be the Hamiltonian {interaction part only) of
our system,

Z{(A)= fr expl— BH(A)] 4T, (2.2)
where H(A) e C(T"; R), dT" being the measure on ', and
B8=(kpT)™; then we have for all observables ¢ < C*(T';T),
the “thermal average”

(@)a=27"(A) [_dT () expl- BHA) )] (). (2.3)
We now specify more precisely the form of the Hamil-
tonian we want to deal with, We put

H(A)= 2 JR;=R)P(gi,8,)+F ngQ(gj), (2.4)

i, ICA
i#

P and @ being uniformly bounded (in g;,£;) functions on
the compact group G(A)=x}4! Gg,, with values in R, F

an external (symmetry breaking) coupling {ield, and J a
coupling function satisfying:

1, JR)=« if ||R|]| <y (hard core)

2. 2 |[JR,~R,)}|(R,-R,)sW<>Vn (2.5)
m=1

such that for every configuration R, the position vectors
satisfy, for all p and m, the relations

”Rp —'Rm” = Y,

where W is independent of R, and of the configuration
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{Rm}:=1,
3. J(R)=J(-R).

Writing (2. 4) in the form H%(A) + FH’(A), we also as-
sume that for all configurations {R}, compatible with
(2.5),

HY(MER L {gr, gD =H (W) (R:}; {gr,}) for all g G. (2.6)
At an infinitesimal level, (2.6) implies the relation

2 XBiHYA)=0,
icA

for each copy X% of any X in the Lie algebra of G.

(2.7)

Our next task is to pass to the thermodynamic limit.
For this we note that conditions (2. 5) are stronger than
the weak tempering condition usually imposed on ther-
modynamic potentials and that, due to the uniform
boundedness of P and @, Fisher’s arguments® can be
easily translated to this case, yielding the existence of
the thermodynamic stability and of the free energy per
particle,

f(F):}\i_m[—(lAIB)"]

xlog [ dT expl- BH'(A) + FH'(A)]. (2.8)

3. BOGOLIOUBOV INEQUALITY

We first recall, without proof, the following result of
Ref. 4 which is the key of the generalization of classical
Bogolioubov inequality. (It may be worthwhile to note
that the proof of this lemma does not lean on the exis-
tence of a geometrical lattice in £%.)

Lemma 3.1; Let (D,)| <o <. be a family of differential
operators on G g {A), for any fixed configuration {R},
and let ($q)1<q<x be a family of functions on C™(G g (A);
C). Then, for every family (X, ) <q<n Of left-invariant
complex vector fields on Gz, (A) we have

Bi Q—(Q(Xa H{A)(r; é <|Dy¢a ’2>(R)

as=l

= ! Z%<Xa(Da¢a)>(R}|2' (3-1)
a=
We now define X, and D, in the following way,
Xy =2 expli(k,R,)]Xem=X, (k)
mC A
(3.2)

D =2 expl-i(k,R,)]Yim=Y,(k),

mc A

where (X:'”)ISQS,, and (Yﬁ"‘)lsas" are two dual bases of
the Lie algebra of G R, which enter the expression of
the Casimir operator, and % is an element of IR".

Following the lines of Ref, 4 and taking ¢,=@, we
get, by introducing (3. 2) into (3.1),

52 A1 D expleite, R Q1D
¥ A mCA (R}

1
= constlA!"]<Q){R,|"’_/;A—kg+—F—B;d”k, (3.3)

where A is an arbitrary finite region which will be speci-
fied later, and A and B are positive constants.
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We are now in a position to prove the following
theorem,

Theovem 3.1: If

= lim lim Z-1(A) IA "1 fFQ(g(Ri})
Fe0 A=

(A)
xexpl- BH(AR L (gD 1 dgr, IR, (3.4)

then =0 for v=1 and 2, for 8#0.

Rewmark: From the assumption made on 7T it is clear
that (3. 4) can be defined by including T in the Hamilton-
ian without changing the result.

Proof: Put £, (k) =3, » expl— i(R,,, k)] (¥;"Q), for a
fixed configuration. Then, since by (2.5), condition
(A3) of the Appendix is satisfied, we have, by Theorem
Al that
2 1vmQ(t2 a,,8) [ | £ ) [Pk, (3.5)

mc A a

Interchanging in (3. 3) the integration on k2 with the one
giving the thermal average, it can be shown, following
the arguments of Ref. 4 that, for & =4, (3. 3) can be put
in the form

B2J Aayly,a) EA<|Yf"‘Q [2)ir) = const|A ]| @)z |
b4 me

d’k
<) wirE (s.6)
It may be worth some value to note the importance of
relation (3.6) [or (3.5)]. This importance lies in the
fact that, @ being {R,} independent, the lhs of (3.6) is
bounded and proportional to |Al (not to [A}2).

We also point out that by condition (2.5), A can be
chosen {R} independent, and thus the integration on the
R refers to @z; only.

Taking these remarks into account, (3.6) can be
transformed into the inequality

o
1> [nf?up /AAk ¥FB’

where . is a positive constant and 7 is given by (3. 4),
For v=1 and 2, this integral is diverging, proving the
theorem.

(8.7

4. THE NEMATIC LIQUID CRYSTAL CASE

In nematic liquid crystals, the long-range orienta-
tional order parameter is usually defined by Ref. 6,

n={P,(cosy))

where ¢ is the angle which the “long” molecular axis
makes with a preferred axis and {-) is the thermal
average. In this definition, due to Tsvetkov,’ the mole~
cules are assumed to be cylindrically symmetric and

n takes into account the fact that the preferred axis is
neither polar nor ferroelectric,

The order parameter so defined describes very satis-
factorily the degree of alignment of the molecules. It is

M. Romerio 803



moreover coupled, in a very simple way to many physi-
cal quantities (see Ref, 6), and enters the main statisti-
cal models which attempt to describe the behavior of
nematic liquid crystals, which all are, in some way,
generalizations of the Maier and Saupe model. ® In this
last one, the stability of the nematic phase is assumed
to come from the dipole—dipole part of the anisotropic
dispersion forces and the transition point calculated
through the mean field approximation method. In all

the improved version of this theory the main changes
consist, on the one hand, in choosing an improve mean
field potential, with terms proportional to Py{cosy) and
P,(cos¢) and, on the other hand, in taking into account
the short-range order interactions which remain very
strong in the neighborhood of the transition point but
are ruled out by the mean field method. Finally, a pos-
sible polar contribution may be present, leading in ad-
dition to a term proportional to Py{cos¢). (P, P,;, and
P, are here Legendre polynomials.)

It should be remarked that if the model is not treated
within the mean field approximation the shori- and long-
range order interactions are functions of the angles be-
tween the different pairs of molecular axes {(and not of
the angles between these axes and a preferred direc-
tion), leading to assume, for the interaction
Hamiltonian, the form

HN) = 25 2 J,(R,~R,)Plcose, ),

mmEA T

(4.1)

where the P, are Legendre polynomials, ¢, ,, is the
angle between the axis of the molecules # and i, and the
sum on » runs over a finite number of terms.

Our purpose now is to see that for a system governed
by the Hamilton (4.1), Theorem (3.1) holds. To do this,
we note that these molecules cannot, being relatively
thick, penetrate each other; moveover, since the inter-
molecular forces are decreasing rapidly (Van der Waals
type) conditions (2.5) are valid for each J,. It is impor-
tant to note here that we assume that conditions (2, 5)
are valid due to a kind of screening leading to a Van der
Waal type interaction. The argument would however not
apply for a strictly dipole—dipole interaction. The only
requirement which remains for the fulfiliment of
Theorem (3.1), is condition (2.6). To show that (2.6)
is valid, we note that if u is any fixed vector of E?,
cosy;; = (g, g;u), where g; and g; are rotations which
send u into the direction of the principal axes of the
molecules 7 and j, respectively. It is then easy to see
that (2. 6) is satisfied and consequently that the Hamil-
tonian (4,1) leads to a system for which n=0, for
dimensions one and two.

It would be hazardous however to conclude that two-
dimensional liquid crystals do not exhibit phase transi-
tions, for the model used is too simple to account rig-
orously for all the detailed interactions of such systems.

In fact, it neglects the following important facts:

1. some possible anisotropy in the interaction not in-
cluded into (4.1) which does not satisfy (2.86),

2. the effect of volume of the molecules (hard rods
liquid) which cannot penetrate each other and can lead,
for high density to a phase transition, °
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3. the possibility that the interaction between mole-
cules does not satisfy conditions (2.5), i.e., is rela-
tively long range.

CONCLUSIONS

We have shown that in the classical case, the
Mermin—Wagner argument, properly generalized to a
larger class of systems, remains valid even if the
underlying lattice to which the constituents of the system
are generally bound is removed. This is the case for
nematic liquid crystals which are analyzed in the second
part of this paper.

It would be interesting to see if the importance at-
tached to this lattice can also be weakened in the proof
of existence of phase transitions.?
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APPENDIX

Making use of methods similar to those introduced by
Ingham, ? we prove the following theorem.

Theovem (A.1): Let

flg)= 22 agexpli(h, @], g, MR, (A1)
ncACZ
where the elements of the set {\,}, -, satisfy
n, =2, ]l =v>0 for all m#n. (A2)
We then have, for v=1,2,""",
"‘gAlanlzm(v,A)fA | @) avq, (a3)

where A is an arbitrary closed sphere centered at g =0
and a,(y,A) is strictly positive for y> 0, independent
of A. {This choice of & is done for convenience only,
it can be generalized to other closed sets.)

Proof: Let k(g) be a continuous absolutely integrable
function on IR¥ satisfying

k)= 0, kg =k(lql), and k(@#0 ina. (A4)
With (A1) we have
S @@ a¥g= 25 an, K, =), (a5)
where "

Klu) = fn” (g) explilg,u}d¥q. {A6)
Using (A4) and the fact that 2la,a, | <la,1*+ la, *, we

get
fpy re(q) ‘f((]) I 2dvq

< T la K@+ 2 [KOm=2) [
ns A mc A
m#n
Let M~ =inf, _, k(g). By (A4), M is different from

zero, and we can write the following inequalities:

[ Farg <0 [ k@) | Fla) Pavq = 2 [, k@)] Fla) [*d*q

< M Z |an\2{K(0)+max Z }K(hm—An)H'
nC A nZA mCA

n#m (A7)
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For v=1 Ingham? has shown that (A7) is, for A~ a
converging series for the following choices of k(g)
and Aa:
cos(1/2T)q,
klg) = {

0 lg| >,

lql =T,

and A=[-T/2, T/2]. For v>1 we take
klg) =exp[- 1+ gl /(1 +]q D12, (48)

Introducing the spherical coordinates |l gll =7,
=%,0(,...,0,.4, Where 0 sy<o0, 00, <27, 0<O,<7
for 2#1 and taking into account for the symmetry of
k(»), we have

g i t o TW/2
K(u):/ drf d91,_1"‘/ d91—'7—r(%{;—)1""1
0 0 0

X sin’=28,_, ** * sinf, k(r) exp(irllull cosé,_;)
- 1
3 T'(v/2) / et / 2\ v/ 2a1)al/ 2
=TG-/ drv* 1 ey) dx(1 - x°)
9 1
x exp(ir [|u || x).
But we have (see for example Ref, 10, p. 553)

1
[ explixt)(1 = 2) /2 gp = ﬁr(("(;/lz))gg In12%)
so that

C(v/2)22/%-t "~
i) = e

ar v k() J, 5 O llull).

This Hankel transformation can be performed (see
Ref. 11, p. 31), yielding

2) YK oy o[ (1 F Hedl®)Y 2]

K(u) =T(v/2)2v/ 2 (} A+ R DD 72 s

(A9)

where the K,_j,,2 are modified Bessel functions (see,
for example, Refs, 12 and 13).

For integer or half-integer index, the modified
Bessel functions are monotone decreasing and fall off
exponentially for large values of their arguments.

K(0) being finite, our next task is to show that
a,(y, ) is A independent, We do this by showing that
the rhs of (A7) is a convergent series, for A going
to infinity, and bounded by a quantity independent of
the configuration A,
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We note that, K(u) being monotone decreasing, the
rhs of (A7) will attain its maximum value for a configu-
ration in which the points A, are, within conditions (A2),
as close as possible to one another. This can be
achieved by considering the A, as centers of balls of
radius v/2 forming a close-packed set.

We define in this set a family of spheres centered at
A, and having radius 7,2y, 3y, ***. The number of balls
having their centers between the spheres of radius
(P - 1)y and Py is certainly smaller than the number
Np_; of balls contained in the one of radius (P + 1)y.
But Np_; is itself smaller than the ratio of the volume
of the sphere of radius (P + 1)y over the one of a ball,
that is, Np_; < (P +1)"2%,

With this bound we have, using the monotonicity of
K(u), that

Z KO, =)
I'(v/2 J K 1+ (P - 1)HHY?
< nz(li/’”’) ij (g+1)y ("Ill)%[(g)jl()zyz](z-%/)a ]

is a convergent series which yields the required bound,
and proves the theorem,
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Time-dependent scattering theory for infinite delta function

potentials in one dimension
John D. Dollard

Mathematics Department, University of Texas, Austin, Texas 78712
(Received 5 July 1977)

Existence of the Mgller wave operators is proved for a system of n quantum mechanical particles
interacting through infinite delta function potentials in one dimension.

INTRODUCTION

There has been some discussion in the literature of
n-body quantum-mechanical systems in one dimen-
sion with interaction between the particles provided
by “infinite delta function potentials” (see for example,
Refs. 1,2)., Such systems have extremely simple prop-
erties and are worth study for this very reason. Scat-
tering theory for these systems (and others) has been
analyzed in using time-independent methods. The pur-
pose of the present note is merely to point out that the
corresponding time-dependent version of scattering
theory can be given for these systems: the Mgller wave
operators exist and the S matrix is unitary. The proofs
are very simple, and in the present author’s opinion
some salient features of the theory stand out more
clearly in the time-dependent version.

1. THE HAMILTONIAN

To reinforce the reader’s intuition, we consider
first the case of one particle in a potential. We wish to
make sense of the operator

H:—%l—n— gzp 4 0B(x) (1)
on the Hilbert space L?*(R). Intuitively, the idea to be
exploited is that the particle cannot pass through the
origin. Thus it is natural to view L*R) as the direct
sum of L3*(~,0) and L?(0, «). On each of the latter
spaces, H should act like the free Hamiltonian H,

—(1/2m)d?/dx? with zevo boundary conditions at x=0.
To apply this latter operator to a function y € L?(0, =)
means: Take the Fourier sine transform 3 of ¥, multiply
3 by k%/2m, and take the inverse Fourier sine trans-
form of the result. This is equivalent to the following:
Take the odd extension of § to obtain a function 4, in
L2(R), apply the free Hamiltonian H, [considered as an
operator on L?(R) in the usual way] to #,, and truncate
H il,sq to Obtain a function in L2(0, «), By this kind of
analysis, we arrive at the following description of the
operator H: Define operators Pz and A on L?(R) as fol-
lows:

>
ror-{'y oo
(x>0),
P x ={ ) (x<0), (3)
A x) = Y(x) = Y(=x). (4)
Then

H=P,HAP, +P_HAP_. (5)

Naturally the situation we have just discussed is equiv-
alent to a two-body problem in which the center-of-
mass coordinate has been separated out. If we inter-
pret x as the relative coordinate x, - x, of this two-
body problem, then the conditions x>0 and x <0 cor-
respond to x, >x, and x, > x,. The definition of the
n-body Hamiltonian

1 &

H:;} T, a7 +IZ<E %05 (x; = x,) (6)

is given in terms of operators projecting on subspaces
of L*(R") in which a certain order x; >x;, >*=>x;
prevails among the particle coordinates.

Let S, be the symmetric group on n elements, and
for each 7=S, let S, be the following subset of R™

r:{(xly--'yxn)l xrl>xw2>'°°>xa‘n}' (7)
Let P, be the following projection in LZ(R"):
(Pad)(xyy 0oy x,)

:{w(xl,... %, if oy e e, x,)ES,, (8)
0 otherwise.

Let o(n) be the parity of the permutation =, and let A
be the following operator on LZ(R™):

AP(xy, . ny X,) E O(T)b(Xpgy Xppy v o 0 5 Kgp)e 9)

It is easy to verify that

P AP, =P, APA=A. (10)
Writing
n 1 dz
Howg =S ad (11)

the definition of H is now simply

H=3 PHAP,. (12)

"< Sy
We have correspondingly
etft=3 P exp(iH)AP,. (13)
=S,
It should be noted that H and H, both commute with A.

2. SCATTERING THEORY

We will establish existence of the Mgller wave opera-
tors
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W, = s-lim exp(iHt) exp(- iH,t). (14)

texe
We do not attempt the usual proof in which exp(iHt)
x exp(—iH t) is differentiated with respect to {, because
H and H, do not have the same domain. Instead we pro-
ceed as follows: Let F: L%(R") — L2(R") denote the opera-
tion of Fourier transformation in all the variables.
Let C, be the operator defined for {# 0 by
e, M) Iomxd
(Cal)(xy, v nny ):————‘—rz——(m“ G ) eXp(zZ) 5 ’)

crn i=1

(15)
x(Fw)(ﬂ;ﬁ,..., ’i“-tn’in) X
Then we have for any # € L*R") (see Ref. 3)
:l-if: | exp(- iH )¢ - C,u] =0. (16)
Now
exp(iH?) exp(— iH,t)
:”;s P_A exp(iH 1) P, exp(— iH t)
" 1m
:r§sn P'AB,(L’),
where
B,(t) = exp(iH )P, exp(— iH,t). (18)

Let ¢, y=L?(R"). By (16) we have (in the sense that the
difference of the two sides goes to zero)

(@, B(t))
=(exp(-iH e, P, exp(— HtW) ,—

fad 13

(ct(py chtw)
=(my...m,/|t|") fRn(FqJ)(mlxl/t, ver,mx,/t)
XPAFY)myx /L, ... ,mx,/t)dx,. . . dx. (19)

Making the change of variables k, =m,x,/t,..., k
=m,x,/!, we obtain

n

(¢, Bt 7, [ FoXky, .. R Py

k,)dk,. . .dk (20)

n’

X(FpWky,y oo ny
where +m=7 and -7 is defined as follows: If

_(1 2 n
T=\m1 72 " )

then
—11——(1 2 n
T\mr 7(n-1) °°° 7r1>.

Equation (20) can be rewritten as follows:

B (1) w F'p_F, (21)
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Thus

exp(iHt) exp(— iH t) X2k 5 % PAF"P, F=W,,
I ol = Sﬂ
Now using (10) and the facts that F*=F"! and F com-
mutes with A, we have

WIW, = "z% ., F7P, ,FAP,.PAF'P, F

(22)

:fEZS F\P_FAPAF-P_F

= ;Sn F-p, FAF-P,F

=Y FAP,F=I, (23)

"= Sn
Since the unitary operator exp(iHt) exp(~iH,t) con-
verges weakly to W,, and since by (23) W, is an iso-
metry, it follows that the convergence in (22} is in fact
strong. Thus existence of a scattering theory in the
time-dependent sense is established.” A calculation
similar to (23) shows that W W} =1 so that, as expected
in a theory with no bound states, the Mgller wave opera-
tors are unitary. The S matrix W}W_ is then obviously
unitary. A calculation similar to (23) yields

S=W}W_= F-lp AP_F
$W.=T, FiPAP,

=) F9P_AP.F,

= Sy

(24)
Viewed in momentum space, the S matrix has the ex-
tremely simple form

FSF*=2, P_AP,.
TS,

(25)

This equation states that a contribution to the incoming
wave function at given momenta k., > £,,>... >k,
{particle 7i having momentum k,, will produce a con-
tribution to the outgoing wave function in which particle
m1 has momentum k,,, particle 72 has a momentum

kn(n ~1), etc. This is the expected result: The scat-
tering at given 2, >k, > ... > k,, exactly mimics the
behavior of classical point particles on a line under-
going elastic collisions, in which they exchange momen-
ta.
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A theory of the electromagnetic two-body interaction
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A theory of the electromagnetic two-body interaction is described which leads to equations of motion

solvable by local (numerical) integration.

1. INTRODUCTION

Although Newton’s action-at-a-distance theory of
gravity is similar to Coulomb’s Law for charged parti-
cles, it was found that its structure is inadequate to
describe completely the electromagnetic force because
it assumes “instantaneous” interaction. The effort to
overcome this inadequacy lead to Maxwell’'s equations
which, while adequate for practical applications, are,
at the most basic level, beset with an impediment —that
they do not lead to a closed set of coupled equations of
motion for two or more charged point particles. Instead
one particle is first considered as a current for which
Maxwell’s equations are solved for the values of the
field variables at the location of the second particle
whose response is determined by the Lorentz force law.
Then, the second particle is considered as a current
whose fields perturb the motion of the first current., The
recalculated first current is then used to compute more
accurate values of the field variables, etc. This is con-
tinued back and forth to obtain the solutions to the
desired degree of accuracy.

Reacting to this situation, Fokker developed a closed
formulation for the electromagnetic force by incorporat-
ing light-cone interaction into the action-at-a-distance
mechanics. ' Essentially he found a Lagrangian which is
not merely the sum of individual Lagrangians whose
variation yields coupled equations of motion. This
Lagrangian, however, produced yet another complexity:
It led to simultaneous advanced and retarded interaction
for each particle, This feature is problematic on two
levels. First, it raises questions of causality because
it would mean that the present is always partially condi-
tioned by all of the future, contrary to observation.
Secondly, it introduces the calculational complication of
precluding the known methods of integrating the equa-
tions of motion (this point will be discussed below).

No resolutions for the causality difficulties of the
pure two-particle problem appear to have been pro-
posed; in fact, apparently the only attempt at resolution
immerses the problem in a many body universe by in-
voking radiation absorbers at infinity.? Moreover,
although integration of the pure two-particle equations
has been attempted, thus far the proposed schemes are
clearly only approximation techniques or useful in
severely restricted circumstances. ®*

This problem continues to be of great interest and is
being studied from many perspectives. Some of these
can be found in Refs. 5-9.

A Ppresent address: 2344 Antigua Ct., Reston, Va, 22091,
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It is the purpose of this article to describe a theoreti-
cal formulation of the electromagnetic force whose
equations of motion can be integrated by known methods
and in which advanced interaction, although not com-
pletely eliminated, appears at most as an effect of only
limited extent. The essence of this formulation, first
presented using Cartan’s principle and modern differen-
tial geometry, '° will be elaborated herein avoiding
abstruse techniques.

2. THE THEORY

The essence of this theory is that it has a single
independent parameter which is given no a priori physi-
cal role (although it has a posteriori physical utility);
its function is analogous to that of a step counter in a
numerical calculation. It does have a priori mathemati-
cal significance, however, as a dynamical parameter in
the sense that it is the independent variable for which
the canonical variables are dependent. The only objects
with physical significance in this formulation are the
world lines; everything else, including the independent
parameter, is a mathematical aid to their calculation.

Let x; be the Minkowski configuration four-vector with
components x,, y,, z;, icl; of the jth particle. Let dx;
be a differential displacement along the jth particle’s
orbit. Two such differentials tangent to arbitrary points
p and p’ on orbits j and % are related to each other by
the Lorentz transformation, L(p, p’, j, k), between the
instantaneous rest frames of j and %k at p and p’; i.e.,
given dx;!,, dx,|, is essentially defined by

dxk’o’:L(p,p/yj: k)dx,—|p- 2.1)

Thus, the differential of arc length, (dx-dx)'/2, is in-
variant because at any point p’ it satisfies

(dxk“' 'dxk|pr)1/2=(dleplf -L dx, ,P)l/z

= (dx, -dx,)"'. (2.2)

All such differentials may, therefore, be set equal to
the common differential ¢d7, where c¢ is the speed of
light and 7 is the independent parameter which assumes
the units of time; i.e.,

cdr=(dx, dx,)"/?=(dx, - dx,)"/*. (2.3)
Dividing (2. 3) by ¢ and rewriting yields
dr=dty;' =dtyi, (2.9)

where ;"2 1 — (v,/c)*]'/? in the customary notation.

Digressing momentarily, observe that a particle’s
proper time, A7, in this formulation is computed by
integration from (2. 4) to be

ar= [ v, (2.5)

J
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Because the y; are not in general equal, it follows that
the values of AT, for different particles are also, in
general, unequal. Although a single variable is the
proper time for each particle, its values are not
simultaneously (i.e., for equal £,+ At,) relevant to each
particle.

Continuing, let four-velocities be defined as

.

vjédxj/dTEyj(vj,ic)Exj (2.6)

and momenta as m,v;, where m; is the jth particle’s
rest mass., With these definitions, the four-vector ver-
sion of Hamilton’s principle

5[ 2/(x,,v,, )dT=0,
71
where [for N (number of particles) =2]

/ :i} [m,;(v,-v,)1/?

2.7

2 T
—22 eje, [ v, (1) v ()8, (1) —x(T))ar],
i -
(2.8)
yields equations of motion coupled by only two interac-

tions. (Because of the upper limit on the integral, not
all possible interactions are included. )

There are, however, two forms these equations can
take, depending on the character of x,(7) -X,(7) for a
particular value of 7; case I, when it is spacelike

m ) = (e /NS Fil )& J=1,2,  (2.9)
and case II when it is time-like (¢, -, >0)
M (X)* = (€,/C)Fy| ror + Fo| sar)”' (X,),, m,%,=0,
(2.10)
where
Fiv=2e¢, [ (x2,-x2,)5((x,(T) —x,(r))2) d7".
2.11)

(For N>2, complex combinations of (2.9) and (2.10)
may hold. )

Case I appears to be more natural, each particle
proceeds under the retarded influence of the other.
Case II is entirely novel; here one particle (b say) has
punctured the future light cone of the other (a) so that
the further motion of b is unaffected by a which re-
sponds, however, to both retarded and advanced signals
from b,

An interesting possibility is that a system might
switch back and forth between cases and I and II.
Consider, for example, two oppositely charged parti-
cles, one very massive, the other not. Suppose they are
initially constrained such that both their world lines are
pure timelike up to a time /, when they are released.

At this point the lighter particle would accelerate to-
wards its partner, which, by comparison, would re-
main virtually stationary. The extention of these world
lines into the future beyond ¢/, can be computed accord-
ing to (2.9). The world line of the massive particle on

a Minkowski diagram would continue virtually parallel
to the segment preceding /;, and filar marks corre-
sponding to increments of 7 would be evenly spaced. The
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world line of the lighter particle would both curve and
be extended by increasingly longer increments for each
incremental increase of 7. Because it is asymptotically
approaching lightlike line, where an infinitely long line
on the diagram has zero length, filar marks on the
light particle’s world line appear to be at increasing
intervals, This disparity will cause the lighter particle
at some point to puncture the future light cone of the
heavy partner and the system will pass into the case II
regime where the lighter particle is free and its world
line straight, It can be shown that eventually the lighter
particle will re-emerge and the system again enter the
case I regime.

3. COMPARISON WITH FOKKER'S FORMULATION

The features peculiar to this theory can best be de-
lineated by comparison with Fokker’s formulation. ! The
most outstanding difference is that Fokker’s formulation
does not exploit (2. 3) and therefore employs a separate
independent parameter for each particle. Fokker’s
Lagrangian is not simply the sum of individual
Lagrangians patched together in an ad hoc manner; he
argued that a truly fundamental formulation should pro-
ceed from the variation of a single system Lagrangian
to a set of coupled equations of motion, The Lagrangian
[-F,

N N
[ = E L= Z/(mj(vj . vj)x/z
7

N
-2 e,ekf
k#i

oo

-0

v,(7,) - VT )OUR(7)) =X, (7)) du>,

(3.1)
satisfies these criteria and leads, by means of the
variation

N
6 [ L;dr;, j=1,2,...,N, (3.2)
7
to the equations of motion
(" u_ €; J By e
m; x;(",-)) =30 < (F'adv"'Flret)k (xj(Tj))w
j=1,2,...,N. (3.3)

These equations, however, cannot be integrated by a
local procedure as is obvious if one imagines attempting
a machine integration of the ith equation at a given value
of 7,. Such an integration; i.e., a calculation of an in-
cremental extention of the worldline for an incremental
increase in 7, requires knowledge of the jth world line
on the forward light cone of the 7th particle, which, in
order to be computed, requires knowledge of the ith
world line on the forward light cone of the jth particle,
but this portion of the orbit is yet to be computed, etc.,
ad infinitum. In effect, the solution is needed as initial
data in order to compute the solution in this way.

Of course, advanced interaction could be precluded
by changing the upper limit of integration in (3.1) to
T;;» Where 7, is that value of 7, which includes only the
retarded potential from the jth particle; however, as
7;; would then also be in (3. 1), it could be written as
the sum of individual Lagrangians and therefore would
not qualify as a system Lagrangian.

Schemes can be imagined which circumvent this prob-
lem by some sort of global approach; i.e., by seeking
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the whole solution at once. For example, perhaps the
solution could be found as the limit of a technique each
successive step of which gave a closer approximation to
the entire world line. At present, however, such tech-
niques appear not to have been developed—Eqs. (3.3)
are in general numerically and analytically unsolvable.

Equations (2.9) and (2,10), on the other hand, can
always be integrated by machine because the information
needed to compute each incremental increase of any
world line in both cases I and II has already been com-
puted, Also by imagining a machine calculation, it is
clear that if each particle’s world line between the past
and future with respect to the same but otherwise arbi-
trary light cone is given as initial data, then the system
of world lines can be extended by calculation indefinitely
into the future or the past. Although this type and
amount of initial data is greater than the customary
Cauchy data [x(7,), x(7,)], it is a general characteristic
of differential -delay equations that Cauchy data are
insufficient to determine a particular solution as enough
initial data must be given to span the delay. '!:1

4. RADIATION REACTION

Because the classical derivation of the mathematical
expressions for radiation reaction employs advanced
potentials, '* which this formulation excludes as a per-
sistent feature, a new physical model of radiation reac-
tion is needed.

Assuming that the universe as a whole is electrically
neutral, a particular charge will induce among all other
charges a coincident virtual negative image charge.
Radiation reaction is assumed to be the interaction of a
charge with its own induced image. The equations of
motion for this system are (2.9), where particle 1 is
the charge and particle 2 is its image. Solving this sys-
tem is made easier by the following. One, to first
order, X, equals X, (modulo effects of reaction lag).
Two, the interaction from the induced image implodes
on the charge as if from an oppositely charged concen-
tric spherical shell. To an accelerated charge, in its
own frame, this interaction is identical to that of a pre-
counter -accelerated shell, which in turn, is identical
to the sign-changed, time-reversed effect of the charge
itself; i.e., F,| . equals F,|,,,. With this substitution,
Egs. (2.9) can be added to give (note: ¢,= —¢,)

M) =(e/20)(F | o = F | s &), (4.1)
This equation is precisely the starting point of the
derivation of an explicit form for the force of radiation
reaction!* which is not herein reiterated.

5. COMMENTS AND CONCLUSIONS

The Lagrangians (2.8) and (3. 1) both employ a nota-
tional gimmick that can lead to confusion, The problem
is that in both formalisms two types of integrations
appear, each with a distinct function. In (2.7) the inte-
gration on T and in (3.2) the integrations on 7, belong
to the variational principle; whereas, the remaining
integrations really are superfluous. They are part of
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a notational gimmick used to express Lienard —Wiechert
potentials in an elegant form by exploiting the proper -
ties of the Dirac delta function. '® In fact, the delta
function can be expanded and the integrations over the
dummy variables 7, in (3.1) and 7’ in (2. 8) executed to
write these Lagrangians in a more transparent form
before executing the variation., This form would
preclude confusion regarding the distinct roles of the
various 7’s and integrations, albeit at a cost in
elegance.

The structure of differential-difference equations,
such as (2.9), is such that there is not a unique orbit
through each point in phase space. This fact is another
facet of the requirement for more than Cauchy initial
data. A consequence of this fact is that there is no sur-
face, spacelike or otherwise, perpendicular to all
orbits whose evolution is regulated by the dynamics
such that it could be parameterized by a single variable.
This has lead to the belief that a single variable cannot
be used to parametize all orbits; however, when each
orbit is regarded independently, no problems arise for
lack of such a surface or other simple correlation be -
tween filar marks on world lines.

The essential difference between various formulations
of the electromagnetic two-body problem is in the selec-
tion of the interactions. Any formulation in which the
interactions are derived from Lienard—Wiechert
potentials is consistent with Maxwell’s equations. In
this formulation the mathematical formalism selects
only retarded interaction except when one particle
punctures the future light cone of the other to become
free while the latter “sees” retarded and advanced
interactions. Further study may show, however, that
this transition effect cannot occur in realistic (many-
body) circumstances. But, if it does occur, it might
confirm the validity of this formulation. Confirmation
can in principle also be obtained by comparing observed
with computed world lines (when the formalism per-
mits), but again many-body or quantum effects would
probably intervene to make this difficult or ambigious.

In conclusion, this article describes a formulation for
electromagnetic force whose equations of motion can be
integrated by a local scheme (i.e., mechanically) and
which reveals a potential novel physical effect mani-
fested by straight segments of the world lines of inter-
acting particles. Moreover, this formulation affords
new insights into radiation reaction.
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Error bounds for the complex-coordinate method
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In this paper we derive calculable bounds for the error in two-body s-wave scattering calculations done by
the complex-coordinate method. In the process we derive a bound on the error in the Born approximation.

The utility of the results is discussed in light of simple examples.

INTRODUCTION

Variational methods have long provided one of the
most accurate means of performing numerical calcula-
tions for potential scattering. Since most calculations
involve expanding in a square-integrable set of trial
functions, the incident and scattered waves must be put
into the problem explicitly. For most problems the
initial state is relatively simple, so for those problems
having simple final states, the necessity of explicitly
including the final state boundary condition in the prob-
lem presents no particular hardship. For those prob-
lems having complicated final states (especially three-
body states), however, the labor involved becomes
prohibitive.

These facts have lead to an interest in developing
variation techniques which avoid the necessity of expli-~
citly representing the scattered wave. These techniques
involve working for complex values of the energy, the
momentum, or the spatial coordinate.

In this paper we will consider certain formal proper-
ties of one of these methods —the complex-coordinate
method.' We will derive calculable bounds on the error
in the approximate T matrix resulting from an applica-
tion of the complex -coordinate method, assuming cer-
tain restrictions on the potential involved. Although,
as mentioned above, the method was developed for use
in complex scattering problems, in this paper we will
consider only the s-wave scattering of two simple parti-
cles interacting via a local potential V(#}.

We will assume that V() is an analytic function of »
in the domain fargy! <, and that for sufficiently large
{#! in this domain | V{r)| <exp(-€lv|). We also assume
that V(#) is real for real ». With these assumptions the
T matrix has been shown to satisfy the following station-
ary expression':

(p|Tpy=(p|Vp)+ 6%(po| Vox) + 6%x*| [V, p6%)]
- GX(E + 602 /dv® =V )X). (1)

In this expression | p) = (sinp7)/p, V,= Vi{rt*), and x is
a trial function to be varied subject to the restrictions
that it be square-integrable and lie in the domain of
definition of the relevant operators. ¢ is a complex
number of unit magnitude satisfying the restriction

0 <argt <min[a, tan(e/p)]. (2)

Numerical values for the 7 matrix are cbtained by the

) permanent address: Mission Research Corporation, Santa
Barhara, California.
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following procedure: Expand y in a complete set of func-
tions f; keeping N terms:
N

x=2a.f; (3)
where the g, are numbers to be solved for. This formula
for x is substituted into Eq. (1) and the implied integra-
tions are performed producing a bilinear form in the a,.
By setting the partial derivative of this form with re-
spect to each a; equal to zero, an inhomogeneous set of
linear equations is obtained and subsequently solved for
the a;. These values of a; are then used to calculate an
approximate value of 7 by Egs. (3) and (1).

It is easy to see that the value of 7 derived by the
method of the previous paragraph can be written as
follows®:

(p| TPy = p| VD)
+ 65 VE[p6]| PY[E + PM6@/dv* ~VOPY [PV [p6*] (4)

where P¥ is the projection operator which projects onto
the space spanned by the first N f,’s.

In the next section we will derive a bound on the
difference between the right-hand side of Eq. (4) and the
exact 7 matrix under the assumption that we know a
bound for |[(E — 6*d?/dv* ~ V) Yil. In the following section
we will derive a bound on this expression for more re-
strictive classes of potentials.

ERROR BOUNDS

Throughout this section we will assume that the
following relation holds:

E + @a?/dv® — VM <A, (5)

In the following section we will derive expressions for
A under various assumptions on V.

If in Eq. (4) we replace P¥ by 1, the resulting equation
for T is exact. The error in the approximate 7 matrix
is therefore given by

E= <Vg‘[pe] {{(F - ezﬁ; - Vg>-l
- P”[E + p¥ <62 dd:z - Vs) PN_J_1 P”}Vg[p 6* l>

X[E+PN(62~;; -V‘,)P”]_lPN}Vg[p 9*]>. (6)

We define a vector X to be:

2 :{1 —(E+92g;— - VS)
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2 -

xp¥ pvpy ¢ L _y, p

1
L pr (v, [pe)

(M

% can be constructed very simple from the information
obtained in generating the approximate T matrix. Using
this definition and Eq. (5), we find, applying the
Schwartz inequality to Eq. (6),

(1= |vilpeD] 121, (8)

The first two factors on the right-hand side of this
inequality can be computed with available information.

If a value of A is provided, Eq. (8) therefore represents|

ST

2 dZ
_<V9[p9*]((E+ 6 d‘iz —Vé,)P”{EJrP”(ezW

d2
+P¥ ¢
X[E ( a

-1
f v )p] vipe
If the complex-coordinate method is to work well, it is
reasonable to expect that the first three terms of Eq.
(10) approach (V [p6*]I V [p6*] fairly rapidly.
Heuristically speaking this depends on the rate of con-
vergence of generalized Fourier series for the wave
function in terms of the f;’s. The last term in Eq. (10)
requires more careful examination,

We call the last term of Eq. (10) 5 and write
5=(V [p6*]| PYV,[p6* ] + (d%/ar) o | @Y (d?/ar®) )
(Vo | @YV 0) = (V0| QY (d2/dr*)p)
—(@¥(d/dr) 0| V), (11)

where @' =1 - P" and ¢ =P¥[E + PY(6*d?/dv* -V ) P" ]!
x|V [pe*).

Assuming we have not made an inane choice of f’s,
the first term in Eq. (11) will rapidly approach
(Volpt*|I V[ p6*]. Thus, if we expect | £ | to go to
zero, we must have the last four terms in Eq. (11) go to
zero. Again speaking heuristically we expect these
terms to decrease rapidly in magnitude only if the f’s
can easily represent not only the wave function, but
also (d®/dr*)f, and V,f,. In general this will be a sub-
stantially more restrictive requirement.

Only experience can effectively test the usefulness of
the bound given by Eq. (8), but the arguments at the
last paragraphs do not appear particularly hopeful. It
is likely that there exist examples for which the com-
plex-coordinate method converges quite nicely but for
which the right-hand side of Eq. (9) does not approach
zero. This does not mean to say, of course, that even
for such cases the bound might not be useful. The bound
on the Born approximation does not depend on the f’s,
and it is hard to guess to what extent Eq. (9) may be
valuable,

In light of these remarks we consider the example

V(r) = —exp(~7),

i+1\vz i Z) (=)
(5 e 20 ey o
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a computable bound on the error in the Nth approxima-
tion by the complex-coordinate mathod.

It is interesting to note that since the “zeroth order”
approximation in the complex -coordinate method is the
Born approximation, we have derived a bound on the
error in Born calculations. If we let &, be the error in
*he Born approximation for the potential V, we find
(setting 3, = | VE[p6]):

|5l <] [VilpeD|®a. (9)

We now wish to consider the quantity |3 | in more
detail. We start be writing

. -1
- VH)P”[EJrP” <92§;7 —V9>P”] V[pe*]|v,pe*]

_va) PN]-I V[ p6* ]>+<(E+ 92;—; - V6>P“’

2 dz N2 dz N N *
<E+9 -d—F—Vg>PN[E+P <9 P —Vg)P] Volp6 ]>-

(10)

|This set of /’s is complete and orthonormal. The wave-
function y [by this we mean the function for which Eq,
(1) is stationary] vanishes at the origin and the Fourier
series for it in terms of the f’s converges very rapidly.
We therefore expect that the complex-coordinate method
will work quite well, and this expectation is easily veri-
fied. The functions {d*/d#*)f, do not vanish at the origin
and the generalized Fourier series for them converge
only like 1/N, N being the number of terms. For this
example Vf is well approximated by a series of f’s,

but this would not have been the case if we had chosen

a Yukawa potential. The function 6 of Eq. (11) converges
very slowly in this example, and the error bounnd of
Eq. (8) is much larger than the actual error,

The results for the bound on the error in the Born
approximation given by Eq. (9) are harder to interpret.
We will show in the next section that if p is greater than
1, a bound on A is given by

A< 1/sin2a(p? - 1), (13)
where
6=explia),

Using this we find:
|E5] <1/4(p* - 1)(p* +1)(1 - p*tan®a) cos*asin2a.
(14)

We choose o to minimize this expression and compute
the values for £ given in Table I. In this table Amp is

TABLE I. A comparison of the error in the Born approxima-
tion amplitude with the error bound for the potential V=e>,

r Amp B E ) R

1.4 0,208 +0,067: 0,226 0.0694 0.219 3.16
1.7 0,149 +0,041¢ 0,159 0,0418 0.0948 2,26
2.0 0,112 +0,026¢ 0,118 0,0270 0.0517 1,91
2.3 0,0864+0,0179% 0.0903 0,0183 0.0318 1.73
2.6 0.0689+0,0127¢ 0,0713 0,0130 0.0211 1,63
2.9 0,0561+0,0094¢ 0.0577 00,0095 0.0148 1,55
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TABLE II. A comparison of the error in the phase shift ob-
tained from two methods of unitarizing the Born approximation
with the allowed range given by the error bound.

P 4 51 62 5max amin
1.4 0.3112 0.2823 0.3067 0. 56 0,01
1.7 0,2658 0,2481 0, 2644 0.39 0.11
2,0 0.2314 0,2110 0,2311 0,30 0,14
2,3 0. 2046 0.29867 0, 2047 0.25 0.14
2.6 0.1831 0,1776 0.1834 0,22 0.14
2.9 0.1656 0.1617 0.1659 0.19 0.13

the exact scattering amplitude, B is the Born approxi-
mation, E is the absolute value of the error in the Born
approximation, and R is the ratio of E to the bound ¢ .
As the Born approximation becomes better for larger

p the bound also becomes better. For values of p larger
than 2 the bound on the error is always less than twice
the magnitude of the actual error, which seems quite
acceptable.

Table I and the discussion of the previous paragraph
probably overstate the value of £, for the particular
example considered. The reason for this is that no use
was made of the knowledge that the scattering amplitude
must satisfy the requirements of unitarity. Presumably
anyone trying to solve this problem would compute a
phase shift, rather than a scattering amplitude, as a
means of unitarizing the Born approximation.

If we draw a circle of radius ¢z around the Born
approximation, the intersection of this circle with the
curve (1/p)[exp(i5) sind] will determine a maximum and
minimum value for 6. These values are listed as §,,,,
and 6,,, in Table II. &, and &, are approximate values of
5 obtained from two different ways of unitarizing the
Born calculation. §, is the closest point on the curve
(1/p)exp(i6 sind) to the value of the Born amplitude. 3,
is the R-matrix approximation obtained by setting
tand,=pB.

Clearly, the approximate 0 represented by 8, is much
the better of the two. Even at P=2.9 the range of values
between 5,,, and 0, is very large compared with the
actual error in the approximation 6,. The values of &,
are not as accurate as those of 5, and for these calcula-
tions the actual error is about 10 percent of the value
suggested by §,,, and 5, . This bound is perhaps good
enough to be interesting, but is not nearly as good as
the bound for the scattering amplitude.

If the theorems in this paper are generalized to in-
clude those cases for which unitarity cannot be as use-
fully applied (scattering of particles with internal struc-
ture, many-body scattering, complex potentials, etc.),
it may be that a bound such as that of Eq. (9) would
actually prove useful.

EXPRESSIONS FOR A

In this section we derive expressions for & of Eq. (5)
under various assumptions on V., We begin by showing
that such a bound must exist. To do this we must learn
something about the spectrum of the operator:

2
HeE‘W+9*2Vs- (15)
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From the obvious identity

d2
+
(A dar®

w2 Y _ oef e 2 _d’ .
-6**v,) =6*(¢®r+ 0 14 (16)

ar?
we see that if A is in the resolvant set of H,, then ¢\ is
in the resolvant set of:
dz
-2 27 + V&' (17)

We now wish to consider the Jost function® f(p) for
the operator H,- p’. The assumptions we have made
about V assure that f,(p) will be analytic in the domain
Imp > -€¢/2. Furthermore, for all values of p which
satisfy this condition, f,(p) can be expanded in a con-
vergent series of the form

felp)=1+2,g.(p),

where the g, are integrals of the form

g.= 1 ,,/ dzl[exp(Zizlp)—I]B*ZV(G*ZI)/ dz,
(2”)) 0 ' 2y

x{exp(2ip(z, — z,)] - 1} 6*2V(6*2,) « -+

x/ dz {exp(2ip(z, —z,.,)] - 1} 6*V(6*z,). (18)
2p-1
We change the integration variable z,— 6y, to obtain

) - o
gn= W/ dyl[eXp(Zin’%) - I]V(y 1)/ dv

o Y1

x{exp(2ipb(y, ~y )] -}V - - / ) dy,

x{exp(2ip6(y, =v,.)] -1} Viy,). (19)

This is the g, appropriate to the expansion of f,(6p). We
have thus shown that for the domain where Imp and Imép
are both greater than -¢/2 we have

Folp)=f1(pb). (20)

For 6=1, H, is a self-adjoint operator whose Jost func-
tion cannot be zero for real positive values of the argu-
ment. Using this fact and Eq. (20), we find that

Fop8*) =F(p) (21)

cannot be zero for real positive p as long as 8 and p are

" such as to satisfy the condition teading to Eq. (20). We

can assure the validity of Eq. (20) by imposing the
further restriction on 6: argé <sin™¢/p [see Eq. (2)].

For operators of the H, type all positive real numbers
will be in the continuous spectrum. A nonreal number
A having a positive real part will be in the point spec-
trum of H, if f,(/'A) =0, and in the resolvant set other-
wise. ? Equation (21) shows that A of the form p?6*?,
where p is real, are in the resolvant set of H, Combin-
ing this result with Eqs. (16) and (5), we have proved
that

(E+ 6*d?/dv? -V )™ (22)

is finite and thus the bound on & which we seek must
exist.

To find a calculable bound for A, it will be necessary
to impose more restrictions on V. One case for which
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we can give such a bound is [Im6*?V(8*y)! <, For this
case we define the operator
- d2 *2 *
Hp= - —5 + Re[6*2V(6%y)]. (23)
ar
Hp is a self-adjoint operator and therefore has no spec-
tral points off the real axis. Thus we have

I(6**E —H ™Il <1/|Im6*2E]. (24)
If [|IIm 6*2V(6*#)|l = max | Im 6**V(6*7)| <Im6*2E, we have*
A=|(E + 6 /dv* - V) | =1l (6¥°E + d?/dv? - 6%V 1|
<(|mm(6*E)| - ltm6*2V(6*7))) 1. (25)

In Egs. (24) and (25) we have assumed E is real. Equa-
tion (25) provides the bound on & we desire. If the
potential is an analytic function of » and satisfies the
rest of the requirements of this paper, it is clear that
the bound of Eq. (25) will apply for sufficiently high
energy.

We will now consider the bound given by Eq. (25) in
the special case V= -exp(-7). We set 6=exp(;®) and
find

Im 6*2V(6*7) = exp( - 2i @) exp[exp(- i a)7], (26)
or
| Im 6*V(6*7)| = | exp(- 7 cosa)(cos2a sin(r sina)
- sin2a cos(rsina))| < sin2a. 27
Substituting this result into Eq. (25), we find
A s1/sin2a(p®-1), p>1, (28)

where p is the momentum. This relation is the same as
Eq. (13) of the previous section.
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CONCLUSIONS

We have given formulas for a calculable bound on the
error in scattering calculations done by the complex-
coordinate method. We expect that similar results can
be given for more complicated (realistic) problems in
which case the error bound might provide useful infor-
mation. If experience proves the error bound to be use-
lessly imprecise, some may still find its existence to
be of interest. As a final remark we point out that even
for those potentials which satisfy our requirements,
Eq. (8) cannot be used to prove the convergence of the
method. The reason is that we cannot bound the spec-
trum of the projected operators away from the real
axis. If, in addition to the requirements already im-
posed, we insist that the potential have a sufficiently
small derivative® on the real axis, then it is easy to
bound the resolvants of the projected operators, and
Eq. (8) can be used to prove the convergence of the
method to the correct answer as N becomes large. This
condition on the derivative of the potential does not
appear to us to be very natural, and we believe that it
will be possible to prove the convergence of the method
without such an assumption.

13, Nuttall and H, L. -Cohen, Phys, Rev. B 18, 1542 (1969),

2For information relevant to this paragraph see Chap, 12 of
Roger G. Newton, Scattering Theory of Waves and Pavticles
(McGraw-Hill, New York, 1966).

*W.E, Lyantese in Appendix I to M, A, Naimark’s Linear
Diffevential Opevatovs in Hiltert Space (Ungar, New York,
1966),

AT, Kato, Perturbation Theory for Linear Operators
(Springer, New York, 1966), pp. 214,

For the use of such a condition on a similar problem see
E}. M)cCartor, unpublished thesis, Texas A & M University
1969).
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It is found that, in a magnetized plasma, finite amplitude lower hybrid waves can propagate as solitons
consisting of localized density cavities together with doublets of electric field spikes. An analytical
expression, as well as the corresponding evolution equation, are derived for the small amplitude limit.
Such solitons can also exist for many other waves having similar dispersive and nonlinear characteristics.

I. INTRODUCTION

It is well known that nonlinear dispersive waves can
propagate in the form of localized pulses known as soli-
tons.! In particular, the Korteweg—de Vries (KdV)
equation and its soliton solutions have been studied ex -
tensively for waves in various branches of physics.

In this paper, we investigate a new type of soliton, which
is associated with waves having a linear dispersion
relation different from that of the KdV equation

As a concrete example, we shall consider nonlinear
lower hybrid waves? propagating perpendicular to an
external magnetic field in a plasma. The derivation and
results presented here are applicable to many other
waves having similar dispersive and nonlinear
properties.

It is found that such waves can propagate as solitary
pulses. The latter consist of localized density cavities
together with spiky electric fields, An analytical expres-
sion is derived for small amplitude solitons. We also
obtain by means of an appropriate scaling scheme an
equation governing the evolution of the latter,

. DERIVATION OF EQUATIONS

For simplicity, we shall consider a lower hybrid
wave pulse moving exactly perpendicular to the external
magnetic field B,z. The appropriate equations describ-
ing such a wave are

a,nj+ax(njvx,):0, (1)
Qv FU 20 = vijaxln(nj/no)

-(g,/m)o.p+Qu,,, (2)
04Vy; T 080y = = Qs @)

n,=n,, (4)

where j=i,e; vy, =(T;/m)’?, Q,=e,B,/mc, and g,
=-g,=e. Equation (4) corresponds to the quasineutral-
ity condition. The wave propagates in the x direction.
When linearized, Egs. (1)—(4) lead to the dispersion
relation

2 __ 2 2
W =0,9,(1+k25/Q0), (5)
for lower hybrid wave propagation perpendicular to

an external magnetic field. Here v% =(T,+T,)/m,.
Assuming a steady state (3, =0) in the moving frame
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T=¢, £=x - Vt, we obtain from (1)
v, = V="=nV/n,. (6)
The plasma is assumed to be at rest at infinity, where

n,=n,.

Eliminating v,, and o, from (2), (3), and (6), we
get

2 lnBV?/2n% + 05 Inln,/n,) - ed/m,]

=Q2n,/n, - 1) (7)
and
By [niVi/20% + v} In(n,/ng) + ed/m,]1=0 (8)
for electrons and ions respectively. The ions are
assumed to be unmagnetized (2, =0).

For convenience, in the following we nondimensional-
ize the quantities ¢, g, ed, and V by an effective
Larmor radius thvT/Q', the unperturbed number den-
sity n,, the electron temperature 7', and the ion-acoustic
speed ¢, =[(T, + T,)/m,]'/?, respectively. Integration
of (8) yields

¢=-V/2n2+V?/2-(T,/T,) Inn,, (9)
where we have used the conditions ¢ =0 and »,=1 at
infinity.

Substituting (9) into (7), and using (4), we obtain

3, o+ V¥/2n?)=n -1, (10)

where n=n; =n,, and we have assumed m,/m; < 1. The
last condition amounts to neglecting electron inertia,

Equation (10) can be integrated once by first multiply~
ing both sides by ,(In+ V*/2n%). One obtains

(3, (lnn + V2/2n®)?

=n+V¥n-1nn - V3/2x% -1 = V?%/2, (11)

where the boundary conditions at infinity have been
used. Equation (11) can now be put into a form resem-
bling the energy integral of a classical particle with
zero total energy. Accordingly, one obtains

$(0n)?*=-%()

3 _ 2+ 2 21 12,2 2 _ 2 2
:n"[n n V(;:lz—nvzr;zz Vin?/ V/:}u (12)

The potential ¥(») can be analyzed in the usual manner
for the existence of solitary solutions of (12).
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IH. SOLITON SOLUTION

It can be shown that there exists n=n, <1, given by
(13)
such that ¥(n,)=0 and ¥’{xn,) < 0. One can also show that
¥(1)=v/(1)=0and ¥(n)<0if V<1 and n,<n<1l. Fur-
thermore, we note that ¥{n) ~ =« at n=n,=V, and

n, <n,<1 (see Fig. 1). The typical profile of ¥(r) is
shown in Fig. 2,

ny —n2 Inn, —nl = V33 —n, +n3/2),

It is of interest® to look at the behavior of a classical
particle in a potential well resembling that in Fig. 2.
Accordingly, ¥ is the potential energy of the particle,

& and » are the time and space variables respectively.
A particle with zero total energy would start from
n=1, take infinite time to leave this point, and reach
n=mn,, where it attains infinite speed. After #,, it slows
down and eventually arrives at n,, where it is reflected
by the potential wall, The particle then returns to the
point n=1 in a symmetrical manner.

From the above discussion, we see® that the solution
of (11) consists of a localized density depression (n<1)
which is symmetrical about the point of minimum den-
sity. This solution is peculiar in that it contains two
points at which the density gradient is infinite, although
the density itself is continuous (see Fig. 3). Since
E=-23,0=(V?/2n*)3,n, the electric field associated with
the soliton has a profile consisting of two adjacent
spikes, one positive and one negative.

By choosing other boundary conditions, one can con-
struct analogous cnoidal wave solutions with spiky
electric fields.

IV. SMALL AMPLITUDE LIMIT

In this section, we show that an analytical expression
can be obtained for the case of a small amplitude (n=1)
near-sonic (V=1) lower hybrid soliton,

Congider the limit n=1-n«1, V=1~V «1,
such that 6n=0(6V). One obtains from (12),

5Vn® ~261%/3

2
= EYrS TR vt
(0.0nF' = Sy "5, (14)
r
v
8
n=nM

6k n=V

4k

2+

0 4'.2 .!‘ L6 :8 'i n

FIG. 1. The curves n=ny and n=n,=V, Note that for any given
V, ny lies to the left of n,,
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V=5

2t

5 1 n
0 S t—+ R

M \"p

_2.
-41
-6l
-8t

FIG, 2. The potential ¥{n) for the case V=90,5,

Equation (14) can also be derived from (1)—(4) by means
of an appropriate ordering scheme.

Integration of (14) yields

_ 30V el LE- & ( 6_)]’
dn= =~ sech [2(26V)”2+ 3-2-7 , (15)

where £,=0for 0<}£1<f,, and £,=2¢, otherwise. We
have defined

£,=2(26V)'/?[1 +sech™(3)'/?]. (18)

Note that (15) is a transcendental equation for 6x. In
Fig. 3 the solution is plotted for two values of V. The
arrows indicate the locations where n=n(; £,i).

It is of interest to derive a time dependent equation
governing the evolution of the small amplitude solitons.
The ordering necessary for deriving this equation can
easily be deduced from the stationary solution (15).4

In addition to the dimensionless variables introduced
earlier, we nondimensionalize time by (2,2,)"/?, and
introduce the stretched independent variables 7
=Wy _ ), 7=6/%, where e=(m,/m)t/*<1isa
small parameter. Thus, we use a frame which is mov-
ing with the ion-acoustic speed ¢,. For the dependent

FIG, 3. Density cavitites for V=0, 95 and 0,99, The arrows
indicate the locations where the density gradient is infinite,
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variables, we make the expansions

- 2
n=1+eny+eny+--,

— 2
ij—ez),,d+e T,
(1
—/e 3/2 sen
Uy =€ Veyt +e Vey2 + ’

¢ =€dy+elpy oo,

After some algebra, we obtain from (1)—(4) the follow-
ing equation for »,,

- 23,0, = 3,1 +n, =0. (18)

It can be shown that a steady state solution of (18) is
given by (15). On the other hand, Eq. (18) leads to the
linear dispersion relation

w=kec, + (QiQe)”z/kaR', (19)

which agrees with that of a linear lower hybrid wave
propagating perpendicular to the external magnetic field
near the sound speed.

In the small amplitude limit considered here, the
typical phase velocity of the waves is near the sound
speed. In view that finite electron Larmor radius effects
have been neglected [i.e., k2R2<1, where R,=v,,/
Q,=R(1+T,/T,) /%], we require T,> T, for consisten-
cy. In the microscopic picture, the latter condition puts
a restriction on the possible form of the ion velocity
distribution function, otherwise ion Landau damping
effects might dominate, as is in the case of Maxwellian
distribution.

V. DISCUSSION

The solition discussed in this paper consists of a
solitary moving density cavity with two points at which
the electric field is infinite. It is expected that in real-
ity, effects such as two-dimensionality, charge separa-
tion, particle acceleration and trapping, etc. which
have been neglected in the present analysis, should
limit the amplitude of these electric field spikes without
changing the overall picture given here.

818 J. Math. Phys_, Vol. 19, No. 4, April 1978

We note that by choosing a strictly one-dimensional
propagation perpendicular to the external magnetic
field, we have neglected the parallel electron dynamics
as well as the E X B nonlinearities, both of which are
known to be important in smaller amplitude lower
hybrid wave propagation,

Similar solitons can easily be obtained for electron
plasma waves,® upper hybrid waves, electrostatic ion-
cyclotron waves, drift waves, etc., whose linear dis-
persion relations are of the form w?=a + 0%%. In this
respect, Eq. (18) corresponds to the case w=~p"''%k, so
that w =~k +a/2b*/%. 1t is of interest to note the
difference between (18) and the Korteweg—de Vries
equation, whose linear dispersion relation is w=ak
+ bk® and is derived with a different scaling of the time,
space, and amplitude variables, although in both cases
the equations describe nonlinear dispersive waves.

The solitons discussed here can be of practical
interest. One may look upon such pulses as condensates
of waves in physical space, In a turbulent plasma,
where wave—wave interactions are the main transport
mechanism, the existence of these condensates can
significantly alter the transport properties of the plasma
and hence the turbulent spectrum.
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High-precision determination of the critical screening length
for the static screened Coulomb potential
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By a combination of analytical and numerical methods, it is determined that the critical screening length
for two particles interacting through an attractive static screened Coulomb potential lies between

0.8399032 g, and 0.8399039a,, where a, is the Bohr radius.

The attractive static screened Coulomb potential
(SSCP)

Viry=-e®e™/¢/y, (1)

where d is a screening length, is of interest in many
areas of physics, For a cross section of references in
which the properties of this potential have been investi-
gated, reference may be made to Refs. 1-3 and to the
references quoted therein.

A quantity of special interest, for two particles
interacting through an attractive SSCP, is the critical
screening length, d_, for the ground state. For d<d_,
the eigenstate is not bound, i.e., it cannot be formed
with negative energy. The critical screening length,
for the ground state has been calculated by a variety of
techniques. !**~*% In this paper we present a high-preci-
sion value for this length using a method due to
Trubnikov and Yavlinskii.®

For the potential (1), the Schr{idinger equation can be
reduced to the form

u”(x)==Be™*/x)ulx) (2)

where u=1yr, x=7r/d, and B=2d/a,, a, being the Bohr
radius. The boundary conditions are

u(0)=0, (3a)
u(o)=const=1, (3v)

Trubnikov and Yavlinskii® sough the solution in the
form of a series in 3:

ulx) =1 +E (= 81" u,(x), (@)

-
/ =n times~
1

X'):
“expl-x(t, +t, 4+ -+ t)]dtdt, - - - dly .
) B, + 6P U+ttt + 1)

where

u,{

(5)

Expression (4) satisfies the differential equation (2) and
the condition (3b). The condition (3a) will also be
satisfied if 8 is the root of the equation

1+25(~Bya, =0, (6)
n=1
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where the coefficients a, are determined by

~d dt © dt,
a":u"(O):‘/‘ —t%/Q 723 : / =z ("N
L 1 1*31 2 l*t"_1 n

The series (6) converges rapidly. By retaining an
increasing number of terms in series (6), one can
improve the degree of accuracy in the determination
of B,.

The first three coefficients can be readily evaluated
and these are as follows:

a,=1,
a,=1-1In2,
and
a,=1+1n2 - (3/2)In3,

Trubnikov and Yavlinskii® determined a, to two
significant figures and a, to one significant figure,
by numerical integration, Their calculated value of
d/a,is 0.84,

It was found possible to reduce the iterated integrals
for a,, a,, a,, and a, to single integrals and that for
ag to a double integral. These integrals are conveniently
expressed in terms of a function (¢}, where

1 (LBt (8)

0= plr T

This is a continuous function fcr /> 0 which approaches
uniformly to zero as { —«. The explicit expressions
for the coefficients a, to a, are as follows.

“ft-3 t-1 (/)
= -— —_+ —
as=aqa, / (t—l 1n2(t-2)) 2 dt,

f—4 3 -1 (-3 [-3
Ul NEAS P
( p In -1 T
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TABLE I, Critical screening lengths for the 1s state as calcu-~
lated by various authors,

Author(s) 2/ay
Sachs and Mayer? 0.8415
Hulthén and Laurikainen’ 0.839910
Harris® 0.87
Lovelace and Masson’ 0.832605
Schey and Schwartz? 0.840
Trubnikov and Yavlinskii® 0,84
Robinson ef alf,1¢ 0.84187
Rogers ef al,! 0.839908
this paper 0.8399039

t-s-4

Yt I
“8—"7‘,/ 2 df S E-DG+D

. 2(s +1)

t-1 s+3 t=3 ( t-3 s+1)]
X - - -
(I“t-z 1“s+2> 2(1-1)(1“1_2 InS53) )9
For the purpose of numerical integration, appro-
priate transformations were used in order to reduce

the interval of integration to (~1, 1). For the integral
occurring in a,, we used the transformation

t=2(n-3)/u+1l,

s+3

The integrals were calculated numerically on an IBM
360/65 in “double precision.” the results are given
below:

a,=0.390593814496 x10®

a,=0.22135915607x107°

a,=0.886057280x107

a,=0,26377323x107%,
and

ay,=0.6068x107%,

The value of d_/a, obtained by using these coefficients
in (6) is 0.8399039. This value is compared with those
obtained by previous workers in Table I,

The terms in Eq. (6) alternate in sign, Correspond-
ingly, the calculated values of d_ /¢, show an alternating
behavior, i.e., they are alternately above and below
the exact value, while converging towards it, as
successively higher terms are taken into account. This
property can be used to bracket the correct value of
d,/a,. I we retain terms only up to a;, we find d./qa,
=0.8399032. Thus the exact value will lie between
0.8399032 and 0. 8399039 and very likely it will be
closer to the latter value than the former. Other
methods which have been used in determination of d,
are not very practicable for determining such lower
and upper bounds.

Dyson and Lenard!® have investigated the lower bound
for the spectrum of the N-particle Hamiltonian with
Coulombic interaction. The charges of the particles
were of equal magnitude but of unspecified signs. These
authors' have given a number of theorems for the lower
bound of the energy. In their Theorem 2, they showed

820 J. Math. Phys., Vo!l. 19, No. 4, April 1978

that

E_..> = WN(N ~1) Rydbergs, (9

mi

where u=1/5 in terms of our notation. Dyson and
Lenard™ used the approximation u=1/Y2 and obtained

E_, > - [N(N-1)/V2 ] Rydbergs. (10)

m

The value of 8, determined in the present paper
sharpens this limit to

E_, > - [N{(N-1)/1,6798078] Rydbergs. {1y

min

When N is large, Dyson and Lenard' have given a
better lower bound in their theorem 3:

E (12)

For N<4x10°, expression (10) gives better bounds
than (12), while, above this value of N, the reverse
is the case.

.= —52N°/? Rydbergs.

mi

Subsequent to the work of Dyson and Lenard, there
have been improvements on methods to obtain the limit
on the bound for the stability of matter. These efforts
have culminated in the work of Lieb and Thirring, '*''¢
whose result for ¢ species of fermions (units: 2m =e
=h=1) moving in the field of M nuclei with positive
charges Z, is as follows:

M
Em'n'>' - 1.31[12/3]\][1 £ (22;‘7/3/1\[)1/2]2'
=1

i
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Summation of partial wave expansions in the scattering by
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Punctual Padé approximants are considered as a summation method of the slowly convergent partial wave
expansions associated with the scattering by long range potentials. The asymptotic behavior of the family
of sequences [n,n +m], with fixed n, of the Padé table, is studied. A set of theorems are proven,

which show that their rate of convergence increases rapidly with n. It is noted that these approximants

may be computed by means of the recurrent € and 7 algorithms.

1. INTRODUCTION

On the calculation of nonrelativistic scattering
amplitudes, three significant energy ranges may be
separated. The limits of these regions are not well
defined and depend on the particular process and inter-
action considered. In the low energy range, calculations
may be performed in a satisfactory way by means of
the partial wave method, using a small number of
phase shifts. In the high energy region, the first term
of the Born series is able to give good results,
Problems arise when calculating in the so-called inter-
mediate energy range. When extending the first method
to this region, the number of phase shifts, required to
get a good approximation for the scattering amplitude,
increases with the energy. Otherwise, when using the
Born series, an increasing number of perturbative
terms are necessary as the energy decreases. In other
words, the rate of convergence of both expansions is
slow, and calculations become very involved in the
intermediate energy region. Depending on the process
considered, other methods of calculation, such as the
distorted wave or semiclassical approximation, are
rather efficient in that energy range. However, an
interesting global approach is to keep the original
perturbative or partial wave expansions, and to find
adequate mathematical summation methods, in order to
avoid the calculation of high order terms in the series.

For the perturbative series, the Padé approximants
have been proposed as a proper method to obtain
significant values for the scattering amplitude, when the
expansion is slowly convergent or divergent. Formal
properties of the convergence of these approximants
have been studied,' and different applications show
that they are able to extend the information contained
in the low-order terms of the Born series, for medium
energies® even outside of the convergence disk of the
original perturbative series.

In atomic and molecular collision physics, the inter-
actions are mainly governed by long range potentials.
This determines the requirement of calculating several
hundreds, or even thousands, of phase shifts, in order
to get accurate values for the angular distributions in
the intermediate energy region, when using the partial

aResearch supported by FINEP and FAPESP under contracts
No. 356/CT and No, 76/0643, respectively.

®)0On leave from the Depto. de Fisica, UNR, Rosario, and of
Cons, Nac, Invest, Cientif, ¥ Tecn. of Argentina.
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wave expansion,® Then, it is very important to find a
method to efficiently summate this type of series. With
this scope, some efforts have been made before by
using the Padé—Legendre approximants.* However, no
convergence theorems are available yet for these
algorithms, and they do not seem to be readily
computable up to the large orders required in atomic
and molecular collision calculations. Other
approaches,® for which formal convergence properties
are known, require solving systems of nonlinear equa-
tions, which become very involved.

Punctual Padé approximants are considered in this
work, as a summation method of partial wave
expansions. We prove a set of theorems regarding
their asymptotic rate of convergence, when long range
potentials are present, showing it to be greater than
that of the original expansions. In Sec, 2 the approxi-
mants are introduced, and we show that they may be
used, in principle, to summate any formal series.
Futhermore, they can be obtained recurrently, allowing
for a simple calculation of the high order ones. In
Sec. 3 asymptotic estimates are obtained for the
sequence of partial wave sums of the scattering
amplitude and total cross section, for long range
potentials. By using them, in Sec. 4, three theorems
are proved from which the main results are established.

2. PUNCTUAL PADE APPROXIMANTS

The [N,M]C(z) Padé approximant to a formal power
series

Clz)=2b, 2" (2.1)
720
is defined as a rational function®
+a,z+ .- M
[V, Mg, =SBl ot T au2 (2.2)

N
1+bz+...+byz

which is determined by requiring that its McLaurin
expansion agree with that of C(z) through the power
Z¥* ) that is,

Clz) ~ [N, M]c,, = O(z"*¥"1), (2.3)
A special case of (2,1) is the infinite sum
C)=230, (2.4)
with partial sums
m,
C,=2sb.. (2.5)

"
o

r
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The Padé approach can be used, in principle, to
evaluate either the sum C(1), or the limiting value of
the sequence {Cm}, by defining, formally, the punctual
Padé approximants (we shall refer to them as PPA),
by Eq. (2.3) and setting z=1 in Eq. (2.2). It is clear,
however, that whether this approximation scheme proves
to be of advantage or not, will depend, in general, on
the particular series or sequences considered. The
approximations so defined, determine a doubly infinite
array of rational functions, from which many sequences
may be selected, Of particular interest, are the
{n,n+mls, approximants, with m > 0. They coincide
with the nth order transforms E"(Cm) of the sequence
C,,, first considered by Shanks® in his thesis, which
were introduced as formal generalizations of Aitken’s
extrapolation formula, in searching for means of
transforming divergent or slowly convergent sequences.
These transformations are nonlinear, and are given by
the determinantal quotients®

H{mMC
E(C)=[n,n+mlsy,= ﬁ—;','ﬁ—%é—é}—} m,n=20, (2.6)
or, equivalently’
HY arC
[n,n+m]c(1,:lﬁz,—cl%’ m,n=0, 2.7
n m
where for »>1, a’C_=a&"'C_, - 4&™C,_, &°C_=C_,

and we have used the Hankel determinants defined, for
a given sequence {f,}, by

fm fmﬂ fmd-h-l
fmol fm+2 fmﬂz
REVAS
fmfk-l fmﬂ; M fm+2k-2

For large n, owing to the numerical difficulties
involved, the [n,n+ m)o, approximants are not readily
computable from Egs. (2.6) and (2. 7). By appealing
to a classical, but little known determinant identity,
Wynn found a recurrent method for calculating these
transformations, ® This resulted in the epsilon algorithm,
of which Bauer’s eta algorithm is a more stable vari-
ant,® from the numerical point of view. In this way, one
has an efficient manner of generating the PPA while
being able, at the same time, to check the convergence
pattern of successive approximations.

It is worthwhile to state some interesting properties
of these approximations which may be easily deduced
from Eq. (2.6). Firstly, let us note that

E(C)=p,C +pCoy+  +pC, ..
with p, +p,+ - -+ p.., =1, which allows us to view the
E (C,) transformation as a weighted average of C,_,
Cu1s+ vy Cpupe It is, however, a nonlinear average,
since the p, are functions of the C_. Secondly, if the
sequence of interest is

C,=A+KC!
with A and K constants, then

E(C)=A+KE(C!). (2.8)
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This relation is very useful, as will be seen, when
proving formal properties of the E (C ).

Furthermore, it is clear that the PPA [n,n+m].,
may be seen, equivalently, as a nonlinear transforma-
tion of the sequence {C,} (given C,, C, .;,..., C, .21,
or of the series C(1) (given b,, b,,...,b,,, ). Because
of this equivalence, reference will be made,
alternatively, to the sequence or to the series, and in
order to keep the well established notation for Padé

approximants, we shall define

[n,n+m](cr)5[n,n+m]cm.

3. THE SEQUENCE OF PARTIAL WAVE SUMS
A. The scattering amplitude

The partial wave expansion of the scattering amplitude
in terms of the phase shifts 6,, is given by

F(8) =515 21+ Dlexp(@it, ) - 1] P, (coss)

I=O

=27a,P,(cosb), 3.1
1=0

where % is the magnitude of the wave vector, and the

{P,} are the Legendre polynomials.

Our concern in this work will be to deal with potentials
having a long range behavior

U(’V)"’ ervik (3.2)

a =0,
r=® 9y

where « is an integer. In this way, we shall include in
our treatment usual potentials present in atomic and
molecular collision processes, which determine a slow
convergence of expansion (3.1) (i.e., «=0, 2, 4, which
corresponds respectively, to the charge dipole, induced
polarization, and Van der Waals interactions.'® The
convergence of series (3.1) is governed, in these cases,
by the high order phase shifts, which in turn, are
mainly related to the long range tail of the potentials,
In order to have the convergence properties of the
sequence of partial sums of expansion (3,1} explicitly
dependent on the latter, we shall define them in the
following way,

m

(9 :Z%a,p, (cos®)

=1(6) - izla,P, (cosb). (3.3)

I=m
The last equality holds when series (3.1) is convergent.
For potentials of the type given by Eq. (3.2), this
requires @ = 0 for — 1 <cosfd <1, while for cosf=+1,
-1, the restrictions, are, respectively, o= 2, and
azl.

In what follows, asymptotic expressions for the
phase shifts will be obtained. By using them, we shall
be able to get estimates for fm(9) valid for m —~.

In general, we shall say that A, asymptotically
approaches B_, that is

Am ~ Bm
if given a small positive quantity €, an integer m, can

be found such that, for wm > m,

C.R. Garibotti and F.F. Grinstein 822



|An = Bnl _
1A,]

It is well known that the 6, are given asymptotically in
1, by the semiclassical formula'!

5, ~ j: dr Fy(r) ~ [ dr Fofr).

In this equation F (r)=[k? - U(r)} -~ L%/¥*]/2, F,(r)
=EE-L¥/P)P2, Ulr)=(Qu/k)WV(), L=1+4%, u is the
reduced mass of the system, V(r) the interaction
potential, #, the outermost zero of F,(r), and 7, the
positive root of F (r). For potentials of the type (3.2),
let us take account of the fact that for {>>1, one has
ri=v,=L/k>1. Then, one can replace the estimate
given by Eq. (3.2) for U(y) in Eq, (3.4), and expand
0, in an asymptotic series

(3.4)

5. ~_1 [T U@dr 1 [=Uk)dy
773 F T8, Fe
c 1 /2 3 1 /2
=~ mfo dé (sin9)* - Bks Frsj; aé
(Sing)ZcxoZ
(0059)2 (3. 5)
Performing the integrals in Eq. (3.5), we get
-ck® R
o0~ gy b+ O gy ) 3.8)
where
7/2 for «=0,
DU 7
1,= L&%z’ for even a >0,
— 1)t
g—# for odd a.
all

It should be remarked that the first term in Eq. (3.6)
coincides with the Massey—~Mohr approximation' for
the phase shifts,

Using the fact that the 6, =0 for I —~«, we may expand
exp(2i6,) in powers of 9, in each term of the series

in Eq. (3.3), in order to get an asymptotic expression
of £,(0) for large m,
f.8)=5(8 Z) L@ +2)8, + 0l + 5)8}P, (cosb)

1 1
F(9) +K2 [l+ e +O<(l+%)"’°"‘)] P,(cos(i),(3 "

where K=ck*I,, and we have used Eq. (3, 6) for the

phase shifts. By defining
Py(cosb)

_Sha(g)—
5,(8) =5 (9)—12’")”(175—)7 (3.8)
we write the asymptotic estimate for £, (9) as
Fn(6)~7(8) +KS, (6). 3.9

B. Asymptotic estimates of S, (6)

In what follows, we shall obtain the explicit depen-
dence on m of the asymptotic sequence {5%*(8)}.

Lemma 3.1: The sequence $2*(g) defined by Eq. (3. 8)
has the following asymptotic behavior (a integer):
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sin(m’é —n/4) 1

0,0 - )

Sm (9) (ZUSiHQSiHZO/z)I/Z Ma+1/2

(0<6<m, a=0), (3.10a)

-1

n O~ (@2 3.1

Sn*(0)~ (1 - )yt (x=2), (3.10Db)
(_ 1)m41

Spem~5g— (a=1), (3.10¢)

where M=m +5 and m’'=m + 1.

Proof : We use the Euler—McLaurin summation
formula,'® which for our case can be written

s‘,’n»a(e):f“ Piloast) jy _ Puicost)

T+2)® 2M

= B,, 4" P;(cos@)) 3 11
G ()., e

where the B, are the Bernoulli numbers.

Let us first consider 0< 8 < 7. In this case the
following asymptotic expansion holds,**

2 \!/%cosfu 1
nsine) AN O(LW)’
where, as before, L=1+3, and @, =L6-1/4. By using
the fact that for n> 1,

cosx sind 1
—/A n72 r]YA_:WAH/Z +O<An/2‘1> ’

“ cosx .
a x"7? A

(3.12)

P,{cos8) ~<

cosA 1
<Az PO\ )
and the expression (3.12) we can show that
~ P (cos@)dl
. GFDF
with a=(2/76%sing)!/?. Furthermore, by a straight-

forward calculation

=\ B,, d®'[Pi(cosb)
nal (2")! dl?n‘ (l + 2)01 l=m

B 1
1 (e O(W)

1
M‘fWESiHQM‘FO(W) (3.13)

_L\’JB

TU-‘ San

71

a . 4 8 1
:W sinf2 <2 (ZOt2 l) + O(W)'

(3.13), and (3.14) in

(3.14)

Finally, replacing Eqs. (3.12),
(3.11), we get

si "6 ~-n/4 1
s‘:,;“(e>~A(e>—‘-“%,—z"—/—)+0(W),

where A(6)= - (27 sin6 sin®6/2)*/2, from which Eq.
(3.10a) follows.

Let us consider now the particular cases 6 =0 and
6 =7, for which the P,{cosf) take the simple values 1
and cosmnl, respectively.

For 6=0 we will have:

f (z+2)a—(1—a)M“
= B2n d2n- 1 aBz 1
nz:-:/ 271)' dlzn-l [(l + %)a]l=m~ zjwan + O(Iwaoz)
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replacing again in Eq. (3.11), we immediately obtain
Eq. (3.10b). We note that we must require o > 1, to
have bounded quantities.

For #=17, replacing the asymptotic estimates

© cosnl (- 1) 1
L T+ 0 e +O<M°“3>

= B, d* [cosnl]
@ Lem

wi Ce) al?~ @ +73)

-1)"a<h B
-5 i (= e - Do+ of )

(~Dmaf1 1 1
:Moml ?“z +0 Mowz)’
in Eq. (3.12), we obtain the statement given by Eq.
(3.10c). In this case our calculation requires a > 0.

It should be remarked that our restrictions on the
value of @ are the usual ones to assure the convergence
of the partial wave expansion, and, consequently, the
validity of Eq. (3.3),

We shall now derive a second lemma, that will be
used in the proof of the theorems in the next section.
We first define the quantities S7'"*® by the recurrent
relation (r = 0)

STl e(8) =8712(6) +S7%(6) - 2 cos 65T (8). (3.15)
Then, we show in Appendix A that
L - !
sp(0) = = (o + py 5y (@=L
n=1 nlot
X[Sp5m(8) + (- 1ys757m(6)]. (3.16)

Lemma 3.2: The sequence {577%(6)} has, for 0< 6 <,
the following asymptotic behavior (», @ > 0):

(2a+ 2y - 1)!! sin™6
27sin%(8/2) sind |/ 2(2a - 1)1 M&*r*172

S;;"‘(B)~—[
. vy T T 1
XSlﬂM@—z—?’E +OW . (3.17)
Pyoof : We write Eq. (3.16) for »=0,

she=-(a+p L=l

Oatn p (_ 150 a*n
=t nlol S (= 187577,

m+l
Then from Eq. (3.10a)
She(6)~ - (a +3)[So" - Suat]
AN a+3), o nom 1\,
~—W;3—72—2 2 sinf sin M’6—4—-—§ +0 IR

By succesive application of this procedure we arrive
at Eq. (3.17).

C. The total cross section

In terms of the phase shifts the total differential
cross section is given by the expansion
Q:%§(21+1)sin26, (3.18)

and we may define the sequence of partial sums in the
form
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4 m
Q, =7 2 (20 +1) sin®,
Y
—Q-21 35 21+ 1)sin%,, (3.19)

-7z
k T=m+1

The last equality holds when the series (3.18) is con-
vergent. For potentials of the type (3. 2) this requires
a>0 [ef. Eq. (3.6)], and in this case we may expand
sind, in powers of 6, and use Eq. (3.6), to obtain an
asymptotic expression for @, ,

-8 5 giiye
Q,~Q-77,Z (+1)5]

~Q -K' 2 a +%)-2a-1

l=m+1

(3.20)

with K’ = 2wc?p**2 L,

By now using the Euler—McLaurin formula to sum-
mate the series in Eq. (3.20), we get an asymptotic
estimate for @, _,

K 1 1
Qm~Q+§E M2a +O<M2a+1> ! (3'21)

We note that Eq. (3.21) shows similar asymptotic
behavior for @ _ and f,(0) [cf. Egs. (3.9) and (3. 10b)],
that is, both sequences tend towards their limits in a
monotonous way, dependent on a power of M~'. By
recalling the optical theorem, Eq. (3.21) gives the
behavior of Imf, (0), while that of the Ref, (0} is given
by Egs. (3.10b) and (3.9).

4. ASYMPTOTIC BEHAVIOR OF THE PPA TO THE
PARTIAL WAVE EXPANSIONS OF 1 (8) AND Q
Theorem 4,1: For 6 such that 0< 6 < 7, and for fixed

n, the PPA [n,n+ m] to the sequence

S, (6)= > P,(cos8)/(l+3)*, (a=0)

m I=mel

has the following asymptotic behavior

[’7,’1+’77](sm(s)}
~[(~ 1)¥*1(sin )2 tn-N=1/23N=2n (3,4 4 2N — 1)1 IN!
(8inAmen)?¥-m1]/ [(27 )/ * (20 = 1)1 !

(sin8/2)?n*! e a1/2)
where N=n/2, for even n, N=(n~1)/2 for odd », and
A;=(+1)0-n/4.

4.1

Proof: We use definition Eq. (2. 6) for the [n,n + m]
approximant and we first consider the numerator
H'm {S,}. We add by pairs its succesive even (and odd)
order columns, and rows, using Eq. (3.15), in the
following generic way,
Sire ghe ghal |ghe She 2cosbSing+Siy®

mel me2 m+l m+l

|Sha siha gl |ghe Sha 2cos6Sh+SiLe

m+l m*2 m+3 m+l m+2

Sis Sk sis | |Shy Sig 2cosesis+sihe

me2 m*3 m+4 m+2 mi3

i, iy itl,o
Sp% SR Sued

i, §,0 j+l o
=| Sy, ShG S

i, o i,Q i+l, o
S:n'¢2 S,l,;-eg S:n#.'i'
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By repeated application of the procedure, we obtain

S0, o o0, a La 1, s N,
bm' bm’*l Sm’*l Sm’*'a’ Sm;n-N
0, a 0,a 1,« 1,a e N,a ’
Sm'u Sm'¢2 sm'42 Sm'+3 Sm*n-N'l
{m) _ La 1,a 2, o 2, o N+,
H,,Tl {Sr} - Sm’ﬂ Sm'~v2 Sm'+2 Sm’+3 Sm*niN*l
N, N,a N+1, N+, « .o 2N,
Sm"n-N Sm'*n-N*l Sm*nlN*l Sm*n:N*Z SM*‘én"?N
—Dm a
=Dm, {si-a}, (4.2)

where N is defined as above. We shall now perform an
asymptotic estimate of D"{‘,I{S{n'f;}, by considering
m — « with fixed », and retaining only the lowest powers
of M™'/2 in the calculations. In this way, from Eq.

(3.17), we have

(20 +2j-1)!1(sinby

Sora~ A0 5 TR

m+R

xsin(A_,, ~jn/2), a=0
=h, sin(A,,, -j1/2) {4.3)
with A, =(m+k+1)8 —n/4, as above. Then, using
Eq. (4.3) in Eq. (4.2)
HmAS, )~ Dm {n, sin(A,, - j7/2)}

= (= 1) ¥+ n-28) (sing)?(n=®

x(sinp,, YNt HO 0 O R} 4.4)
with
(V2 sino¥ Y-V (A(B)Y
H;o){hr}: [(20{ NEMN ]j-1Mj(a+,--1/2)
j=1
x;[_11(2a+2p—1)!!p!. (4.5)

The last equality in Eq. (4. 4) and the result given by
Eq. (4.5) follow from algebraic calculations described
in Appendix B, sections 1 and 2, respectively.

In order to estimate the asymptotic behavior of the
denominator H{™ {45 } in Eq. (2.6), we note that

AZST = A(S rel = Sr) :Sr¢2 - 2Sr+1 + Sr
= 2(0059 - 1) S,u + Si;? ’

where Eq. (3.15) for =0, has been used in the last
step. Then,

H{m{a%S }=H{™{2(cosf - 1)S,,, + S,
~ (= 1)"[2 sing/2] Hm V(s } (4.6)

and it is seen that this determinant can also be evaluated

asymptotically, by using Eq. (4.4). Replacing the

estimates obtained for the numerator and denominator

in Eq. (2.6), we get

(- 1)N(sine)z‘"'ZN’H},‘L’l{h,}
(2sin6/2)"HPn, }

X (sinA,,,, J22Hmmet

and using Eq. (4.5) in Eq. (4.7), Eq. (4.1) follows.

[n:n+m]{sm(0))~ (4 7)

We note that for some particular values of m +=#,
and a given 6, sinA , =0, and consequently Eq. (4.1)
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will predict [#,n +m]~0 (even n) or {n,n+m]~« (odd n).
Actually, we have arrived at Eq. (4.1) by using the
estimate given by Eq. (4.3) which results from keeping
only the leading term in an asymptotic series for $/:&,
in powers of M"'/2, Including the higher orders, the
precision of the [n,n +m] for these isolated cases would
be slightly better in the first case, and slightly poorer
in the second, than that given generally by Eq. (4.1),
without the oscillating factor sinA_, .

Theorem 4.2: The PPA [n,n +m] to the sequence

= 1
0= 2 e

1=m+1

az2

has, for fixed n, the following asymptotic behavior

(a-2)! n!

[n’n+m]{5m‘°”~(n+a-—l)!M“'l ’ (4'8)

Proof: We start with the asymptotic estimate for
S,.(0), given by Eq. (3.10b),

1

[CPSER (a=2),

$,(0)~

to obtain

~(— 1y (a+r-2)!

AT —_— e ———
Sm @ - D1 e

(r

\%

0). 4.9)

Using this relation in the Hankel determinants in Eq.
(2.7), we obtain (Appendix B 3)

Higr !

HO{a7S }~ (CESIE RN (4.10a)
In the same way,
H !
H,(,Z){Arsm}~ ((X - il)! ]nMn(n'u) (4' IOb)
with (Appendix B 2)
Hn{rth= 11 (m+p)! p1 (4.11)
Finally, we obtain
HONATS W}
[",n +m]{sm(0)) 7] 21) AS }
HY !
il (4.12)

o - DIESG M
Using Eq. (4.11), our statement in Eq. (4. 8) follows.
Theorem 4.3: The PPA [n,n+m], to the sequence
(-1

Sm<ﬂ):l=§nm v azl

has, for fixed n, the following asymptotic behavior,

V™o +n -l
T (o — 1) M=

[n,n+m](sm(,))~ (4.13)
Progf: We first consider the asymptotic estimate of
S,.(m) given by Eq. (3.10c),
(_ 1)m¢1

Sm(n)~—-———2Ma » azl,

and we get, using Eq. (4.9)

ety -1

arf(-1)ms_(m)] 2(a - 1)1 Mo+

(4.14)
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We can now use the the property
Hm{S }= (- 1)™H{(- 1)S }
= (= 1)mgO{ar[(- 1)"s_ ]}
and Eq. (4.6), to write
Hm{a%S, }~ (= 2o tnen(s, |
= (= 1)7227(< 1D DI 1)rS )

— (_ l)nmzan’(‘O){Ar[(_ 1)mﬁlsm+1]} (4‘ 15)

By comparison of Eqs. (4.14) and (4. 9), and the use
of Egs. (4.102) and (4.15), we get [cf. Eq. (2.6)]

Him\S,}
[n’n+m](5m(v)):Hnn:){A;S 1
n r

N R ),
2% (o — 1)1 Mo*n Hr(.a-l){;,!}. :

Using the Hankel determinant given by Eq. (4.1) we
obtain Eq. (4.13)

It should be remarked, that Theorems 4,2 and 4.3
can be viewed as generalizations of Theorems 11 and
13 by Wynn,” which correspond, respectively, to the
particular cases ¢« =2 and o =1.

Covrollary 4.1: The PPA [n,n+ m] to the partial wave
expansion of the scattering amplitude f(6), correspond-
ing to a central potential with a long range tail of the
type given by Eq. (3.2)

U(r), s s (4.16)
¥
has, for fixed n, the asymptotic behavior
K(a - 2)! n! N
[n,n+m]f(o)~f(0)+m (a=2), (4.17a)

(n,n+mlyq,~f(6) + (= VK (sing)? (N -1 /29N -2n
x(2a +2N - DIINI(sinA , JEN-m#1]/
[@m)'/2(2a - 1)! I(sin6/2)%*!
X Mavenet/z] (@=0, 0<0<7) (4.170)

(- 1)™'K(q+n-1)!n!
2% (o — 1)1 Mo*2n

(a=1),
(4.17¢)

[nyn+ml ., ~f@)+

where K=ck® I, A, =(j+1)6-w/4, M=m+}, N=n/2
for even n, and N=(n - 1)/2, for odd x.

This corollary follows from the asymptotic relation
between f,_(6) and S_(6) [cf. Eq. (3.9)], the property
of the PPA showed in Eq. (2.8), and the results of
theorems 4.1, 4.2, and 4.3,

Covollary 4.2: The PPA [n,n + m] to the partial wave
expansion of the total cross section @ corresponding to
a central potential with the behavior of Eq. (4.186) has,
for fixed n and a > 1, the asymptotic behavior

K’ 2a)! n!
[, n+mlq Q+ﬁ (n+2a)! M2
with K’ =27¢c%k***F%,. The proof follows from
Corollary 4.1, by recognizing that @, and f,,(0) have
analogous asymptotic behavior [cf. Eq. (3.21)].

(4.18)
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5. CONCLUSIONS

It was the aim of this work to study an approximation
method able to deal with slow convergent partial wave
expansions. With this purpose, the PPA have been
proposed. We have applied them to the sequences of
finite sums S, of the partial wave expansions of the
scattering amplitude and total cross section, for
central potentials with a long range tail. We were able
to show that the sequence of [n, n+m] PPA, with fixed
n, while converging to the correct values, have a higher
rate of convergence than that of the original S,. The
former, represent the rows of the Padé table

[0,0] [0,1] [0,2] [0,3] ~ce
[1,0] [1,1] [1,2] [1,3] =eo
[2,0] [2,1] [2,2] [2,3] ocn

where in the first row, [0, m]=S, . The theorems
proved show that we shall have a gain in the asymptotic
rate of convergence, when going to the nth row with
n=1, This gain does not seem very impressive for the
forward amplitude, or total cross section, since it is
given by the factor n!/(n+ a - 1)! (¢ = 2), but it will be
important for nonzero scattering angles, for which the
corresponding factors will be of the order of (1/m)"
(0<8<q)and (1/mpP" (§ =7).

Our restrictions on the o exponent of the long range
tail of the potentials, are the necessary ones for the
convergence of the original sequence S,. For this kind
of potential, the convergence region in the complex
cosf plane is restricted to the real segment —1 < cosf
<1, In this work we have not studied the convergence
region of the PPA. At least it is the physical region,
but by the usual behavior of Padé approximants, we can
expect it to be larger. In fact, it is possible to use the
PPA as a method for analytical continuation of the
Legendre series. This could be an important procedure
for Yukawian~-type potentials, to continue the scattering
amplitude outside the Lehman ellipse.

A numerical study of the convergence properties
described in this article, will be reported in a forth-
coming paper, !> We found that, in general, they are
those shown by the theorems. !° It should be remarked,
however, that the numerical evidence indicates that the
PPA have very good behavior quite before the S, ()
reach their asymptotic form, emphasizing this fact, the
importance of the former from the practical point of
view, Furthermore, we found fast convergence of the
PPA, in the cases of the Coulomb and inverse square
potentials, for 8 #0, and 8 =7, respectively, which
are not included in our treatment. This suggests that
some of the hypotheses imposed in this paper could be
released.

Finally, let us note that we have dealt with a parti-
cular family of sequences of PPA, i.e., the [n,n+m]
with fixed #n. However, it is most possible that also
other sequences could be well behaved, particularly,
as our asymptotic estimates suggest, the {n,n+m]
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restricted to sufficiently large fixed m, and increasing
n.
APPENDIX A: CALCULATION OF S5* '-=(8) (r=0)

Recalling the recurrence relation for Legendre
polynomials*

(I+ 1Py + 1Py,
AL S LY

= P
T+ D 2 cosbP,
and the definition of S2% [cf. Eq. (3.8)],,
SO,u — -
" 1= (U 3)®

one has

2 cosestre= 5 UFX VPt P

I=me+l (l + 5)0,1
P, .+P,
-8 Bt 5 st (a1)
I=m+1 2 lamel
Furthermore,
& Pld _ §\ Pl
1.2".,1 C+2)* tae @ +2-1°
e P §\(Ot+n—l)! 1
T e )il (-1} (@ +3)"
_salatn=1)1 g, aum
"7: n| (a 1)1 mel (AZ)
and, in an analogous manner, we can see that
n
i) Pli Z;(—l) (a+n _LS(J am (A3)

lam-d Z)G mi n! (Q -

By using (1, 2) and (1, 3) in Eq, (1.1), we show that
St + Shi=2c0sbS *+ 53

with
+

e ¥ +
. {a z) ol

x[Sud+ (- 1S3,

and by induction, we show that the S**® defined by Eq,
(3.15),

Sigtee— Sty + Sh g 2 cosash ™,
is given by the following expression,

(o +n~1)!
(c+% )‘5‘—————“ —

(S + (- 1),

led,a _ _
Stebra—

APPENDIX B: HANKEL DETERMINANTS

1. Evaluation of D7 38’“

n+ m +k

§ in Eq. (4.2)

We note that D7,
n+1.

115531 is a determinant of order

Let us consider the case with odd z. In this case the
number of columns is even, and we may consider them
as arranged in (z +1)/2 succesive pairs, and operate
on a generic one in the following way:
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m
1 La .,
° mﬁio? S:::k'*z
. i,a crelya
m’o-k'é Sm-ok' *

hCr
h Cmoi °
~coskfsin(k +1)8] + Iy SUY R CNY -

" IS aCiie

C oSt

m

c h Sm’l

. . ° .

o h,CH BSE -
* IChi MySha
+sinkBcos(e +1)0| o Ay Chly By Stk

° hk.tc;’fz hhisfmz

° < . -

° ° . .

o hksfn RCk e

o hSha MCha ¢

=sinf| e Ry ShY B Chth -
ISl BruChn

with S7 = sin(A,, - nn/2) and C%=cos(A,, - nn/2), Repeat-
ing the procedure for all pairs of columns, the
determinant can be reduced to

m isa
Dfl"l{s";’k

~(sin@)(m1)/2

4] "0 1 1 so o
RS hCO RS h,CL
0 1 se o
hosmol h Cyml h Sm+1 h’lcmﬂ
X . ° °
§+1 1 aco
h, Siw 3 Cm,,j hj,IS,w hy Cj;;q
1 1 o s 6
h]'smﬁj’l hjcmqjol qulsn:#j-ol kjdcr:oqu

and performing a similar artifice with the pairs of
rows we get
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RSO, hoCO  mSL  mCL e
hoCS =SS mCL  —pSL o

. n+ +1 * e
(sing)™*\m,S? n, O3 b, SIS Ry, OO0

j+l
J - J +1 J+l s e
hyCl =hSI h,  CI*Y —h,Si

. . - .

° o o

. . ° o

Using now the simple relation between the {S C"} and
the {S° CO}, we can rearrange the rows and columns
with proper changes of sign, to obtain

(= 1)¥*}(sing)2¥+»
DRSS BCY o B RCY R C
BoCO = heSS R CO ~h,S° - hyS°

nyC® = hySS Ry, Co
with N=(n -1)/2.

We now substract from the even columns multiplied by
C,, the next to the right, multipled by S°, and proceed
in a similar manner with the rows to get, finally,

—hyaSy, T = hoySs,

DR Sk
ho 0 hl 0 s e 0
0 —hy, 0 —hy *°° hy
~ (= 1)¥*2(sing)2 W1 . )
0 -hy 0 —hyy *°° =hyy
= (= D¥*Ysin6)*¥*D[HQ) {h }H? (B1)

For n even, the calculation is somewhat more involved,
but following the same approach, we get (N=n/2)
DrAsiat~ (sin0 PV HP R FHE B, sinA (B2)

By defining N=n/2 for even n, and N=(rn — 1)/2 for odd
n, we can write Eqs. (B1) and (B2) in the closed
expression (4.4).

2. Calculation ofH‘,’7"+)1 irl tand H(?’ Yhd

By factorizing (m +#k —1)! from the & column, for

h=1,2,...,n+1, one can see that
Hmptb=m! (m+ 1) 2o (m +n)!
1 1 s oo 1
(m+1) (m +2) (m+n+1)
X
(m+n) (m+n+1)! {(m + 2n)!
ml (m+ 1)1 (m +n)!
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We now multiply the 2 row by (2 - 1) and substract it
from the #+1, for h=n, n~-1, n - ,3,2. Repeating
then the procedure, multiplying the 4 row by 4 -2 and
substracting from the sz +1 one, for k=n, n-1,...,
4,3, and so forth, we obtain

H:':"I’{r!}:m! m+ 1)1 (m +n)!
1 1 e 1
m+1) Gun+2) (m +n+1)

(m+12 (m+2) m+n+1)

m+1y (m+27 < (m+n+1)

n
=11 (m+p)! p‘ s
$=0
where the last equality follows from the fact that the
determinant in the first, is a Vandermonde

determinant,

We can operate in an analogous manner to show that

HO {m +20)1 1}

1 1 fe 1
m+2) m+d) *++ (m+2p+2)
(m+272 (m+4P *** (m+2n+2)
= . . . l% (2 + 2p)!!
m+20 Gn+a) **° (m+2n+2)n

n
:2“‘"*”1/2‘130 (m+2p)11 p! (B3)

With the result (B3), we can readily calculate H{"{k }.
We have [cf. Eq. (4.3)]

R
< A(D) ) i{singy U-»

A0)(2a+2j-1)!! (sino)
Qo - 1)1 Mzt

- 2a -1 i G172

X H{O {20 +2j - )11}
from which we get Eq. (4.5).

3. Asymptotic evaluation of H'0) 1 A’S (0){ [Eq. (4.10a)]

Using (4.9) one has, by factorization of the
determinant,

(- 1)y (o +v -2
H{as (0~ HQEK{W
HOa+r-2)1}
= [{a - 1)[]n+11‘/1(ma-1).(n+1)
Héffz’@}
:Ra _ 1 i n+11w(n+a-1)o(m1) s
where the last equality follows from the property

Hgm){sr} = Hfzm{sr*m}'
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Pseudoscalar transition between a spin-J and a spin-5/2

baryon

Chien-er Lee and Jung-Kai Hong
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The decay width for a spin-J baryon decays into a spin-5/2 baryon, and a pseudoscalar meson is
expressed in terms of different types of decay amplitudes. The overall ratio among decay amplitudes and
the approximate decay width formula are derived by ignoring the higher partial waves.

1. INTRODUCTION

Lee and Chen' have pointed out that the SU(3) symme-
try is severely broken for the pseudoscalar transition
of a spin-% baryon into a spin-3 baryon. Therefore, it
is interesting to see whether the SU(3) symmetry is also
severely broken for transitions between even higher
spin resonances. This is the motivation of the present
work in which formulas for the pseudoscalar transition
of a spin-J baryon into a spin-5 baryon are derived for
use in testing SU(3) symmetry as long as the experi-
mental data become available.

Owing to parity conservation, the decays in which a
spin-J baryon decays into a spin-3 baryon and a pseudo-
scalar meson involves three partial waves. Therefore,
there are three independent decay amplitudes in the
above decay process. The commonly used decay ampli-
tudes are of three types: the Lorentz-invariant coupling
constants, the helicity amplitudes, and the partial-wave
amplitudes. The Carruthers’® decomposition of the high-
high-spin spinor is used to calculate the decay matrix
element with definite helicities, and thus enable us to
relate the coupling constants with the helicity ampli-
tudes. The method outlined in Ref. 3 enables us to cal-
culate the partial-wave decay matrix element, and thus
enables us to relate the partial-wave amplitudes with
the coupling constants. In this way, any type of decay
amplitudes can be expressed in terms of other types of
decay amplitudes through the above correlations among
different types of decay amplitudes. The exact decay
width formula can be expressed in terms of coupling
constants, or helicity amplitudes or partial-wave ampli-
tudes as we wish.

Since the higher partial wave has the higher centri-
fugal barrier which lessens the decay probability, it is
reasonable to ignore all the higher partial-wave contri-
butions to the decay. In this approximation, simple
overall ratios among decay amplitudes, and the approxi-
mate decay width formula can be easily derived.

In the present work, the exact decay width formula
for a spin-J baryon decays into a spin-3 baryon and a
pseudoscalar meson is given in Sec. 2. The partial-
wave expressions are given in Sec. 3. The overall
ratios among decay amplitudes and the approximate de-
cay width formula are given in Sec. 4. In the last sec-
tion we conclude our work.

2. THE DECAY WIDTHS

The three independent Lorentz invariant coupling

830 J. Math. Phys. 19(4), April 1978

0022-2488/78/1904-0830$1.00

constants involved in the decay of a spin-J baryon into
a spin-$ baryon and a pseudoscalar meson are defined
by the following expression,

1/2
(1;4—‘1) (3a, 1) 17,40 |I(p,A)

= (q’)\)r‘ 7'75[5 6“2" F

Loy

vs Pusvy oy P lpuzqu,quz H]

Xqyy e v (P52, (v

where M and m are the masses of the spin-J and the
spin-3 baryons, respectively, A’s are helicities,
U,,...,, iS the spin-J spinor with n=J —%, and IV's are
equal to 1 or iy,, depending on the normality of the
baryons to be positive or negative, respectively. The
normality of a spin-J baryon is defined to be P(-)" with
P as the intrinsic parity. The coupling constants de-
fined in expression (1) can be shown to be real owing to

time reversal invariance.

q,,nI“U,,...

The spin-J spinor can be decomposed® as follows,
un(p,A):Q”c(w_1J;A'x"x)évl<p,A')Uvz...v"(p,x”),
(2)

where &,(p,A’) is the polarization vector. By successive
use of the above decomposition, expression (1) can be
calculated to be

1/2
G RS IADIEPRY

I O 1 Cn I
= ({N)1® <(2J_4)! !2J(J—1)>

1/2
xq?-5/? (ilﬂ”_) dh (6)F,,,

2m
with

(3)
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In the above expression, g is the magnitude of the three
momentum of the spin-3 baryon in the overall center of
mass system, ¢ is the product of the normalities of the
spin-J and the spin-3 baryons, N is the normality of the
spin-J baryon and F, is the helicity amplitude. In the
derivation of expression (3), the plane formed by the
spin quantization axis of the spin-J baryon and q is
chosen as the XZ plane. The corresponding decay width
formula can then be easily derived. The expression is

TJ—~3+m)
1 =31
TorM @It

(J+ 33U = 3)

1

~ (g, ~emlq IFV

2q, ¢ )
o F -
( m 2

1 g5 540)
(2 T T m

2}. @)

We note that the above expressions are exact without
involving any kinematical and dynamical assumptions
except Lorentz invariance.

1 8

G

“M c

4 —_— =

0
(J=3)J = 3)
5

2 4 2
_(20_ _f.)q jy G+ q ]LSI H
m 2} m m

3. THE PARTIAL-WAVE EXPRESSIONS

The Lorentz invariant decay matrix can be rewritten
as

Poo)'"? s NP
(m) Glg, 2 )‘,},(O)IJ(I):K»

=(q, 6,6=0;1",2,=0]J(p, )}, (5)

where 1, =0 because the pion is spinless, 6 is the angle
between the spin quantization axis of the decaying baryon
and q, ¢ =0 is due to the choice of the XZ plane as men-
tioned before, the state vector |J(p,A))’ is proportional
to IJ{p, 1)), and the state sector Iq, 6, $=0;1",1,=0)
satisfies the orthonormal condition

<Q: &, (D:O;X’ AZ:OIQ; 6, ¢):0;7\”; 7\2:0>
=8, ,» 5(cosE —cosb). (6)

The partial -wave decay matrix element can then be
expressed in terms of the Lorentz invariant decay ma-
trix element as follows,

(LSIX|J(py )Y
={n(2L + 1)]1/220(L5J; OA'A7)

A
1/2 (7)
y fdcose[(%’%’) <g(q,wl,z,<0>w(p,m>] a3.(6),

by inserting the complete set of states lg, 6, $=0; X', A,
=0} and using the following expression for the trans-
formation matrix element

(LSIA|q, b, p=0;1',2,=0)
9L+ 1\1/2
~(3L C(LST; 0'\") dl,, (6), (8)
47

which can be derived from the expressions for
(LSJIAIJM; x02,) and (IM; A0, 1 q; A7, A") given in Ref. (4).
Substitute expression (3) for the Lorentz invariant decay
matrix element into expression (‘7), we obtain the
lowest partial-wave decay matrix element as follows:
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(LS=%an|J(p,N)’
B (z’N)(““/z (J_%}(_(J_%)ﬂ ]1/2
- J (24 —2)112(2c + 3)(J +¢)
qLF/

Vom (o +m)’?

(-9 %+ 27+ 140 T2
m m

42+ 8(1+e)J+ 3(5+ 4e)>
a7 -3)

4522
_((J—é)i°+J+ +e>qMG+(J-§)qni‘£ H, (9

where L =J -3 or J-%, according to whether the
baryon’s normality changes or not. For the next higher
orbital angular momentum, we obtain

Y (J-$1T+ D e
(LS=3J1|J(p, ) =(mm)

(iN)ror/2 q* G’
2J+e-1 Vemlga+m)’® m®>
G':((zJ_l)‘lﬂ—+(2J+2e+7)) m__p
" qotm
2 2
—((2J—1)%+4+E %GﬂzJ-l)q’M1 H, (10)

where L=J -3 or J + %, depending upon whether the
baryon’s normality changes or not. For the highest
orbital angular momentum, we obtain

(LS=3Jn[J(p,\)’
- =D+ )(J+%)n] 2
TG 20T+ DT+ 1)

(i.N)“'”/Z H

X\/2m (go+ m)>% m*’ (1)

e 2
H=—" _p__M G+—A11TH
qot+m

(go+m)
where L=J +3 or J+2 3, according to whether the
baryon’s normality changes or not. In the above expres-

sions, F', G’, and H' are the lowest, next higher, and
the highest partial-wave amplitudes, respectively.

The decay width when expressed in terms of partial-
wave decay matrix elements takes the following form,
M= S+ my=g e 20 (LS = 2 Ja(p, ) 2. (12)
Substituting expressions (9}, (10), and (11) into expres-
sion (12), we can express the decay width in terms of
the partial-wave amplitudes as follows,

TJ—3+7)

(-1 (4o

_ —em)g® -
T g -4)1! J(J-1)

2 -4
647 M { 3+ 2 J(J+ €)

2J+3 (] ’ ,‘
527 Fe 1) 2T +¢+3) m*

Ll

It can be easily checked that expression (13) is identical
to expression (4).

X|F]?+

(J=3NI+3)JI+3)

B 20U r T et D) mF

(13)
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4. APPROXIMATION

Since the higher partial wave involves the higher
centrifugal barrier which lessens the decay probability,
it is reasonable to ignore the higher partial wave contri-
butions. Mathematically, the complete neglect of the
higher partial-wave contributions corresponds to setting
the higher partial wave amplitudes equal to zero, i.e.,
G’ =H’' =0. Under this approximation, all decay ampli-
tudes become proportional to one another. The overall
ratio among them is calculated from the expressions
(9), (10), (11), and (3). The result is

F:G:H:Fy;,:Fy,,Fy,,:F

oy 2 o .<(J+%)(J+%))”2
T (getm)M T (q0+m)2M2' J -3
s (4 -+ D2
(3 20 - LS9 (14)

From the above ratio (14), all decay amplitudes can be
calculated, if one of them is known. The corresponding
expression for the decay width takes a very simple
form,

(J-1[A+e)J+2]

T = 3+ 1) = G =@y 1 [(1 o7 = 2¢]
(go —em)g® ™ 2
X ST T80m |F|2, (15)
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which are derived from the expressions (13) and (14).

5. CONCLUSIONS AND DISCUSSION

In the present paper, we derive the exact expression
for the decay width of a spin-J baryon decaying into a
spin-3 baryon and a pseudoscalar meson. The exact
correlations between coupling constants, helicity ampli-
tudes, and partial-wave amplitudes are also given. We
also derive the overall ratio among decay amplitudes
and a simple decay width formula under the approxi-
mation which ignores the higher partial waves.

We note that all decay amplitudes defined in this paper
are real, owing to time reversal invariance. In order
to test SU(3) symmetry the Lorentz-SU(3) invariant
coupling constants are obtained by dividing the coupling
constants defined in expression (1} by the proper SU(3)
Clebsch—Gordan coefficient. Then expression (15)
enables us to predict all decays between the interested
multiplets as long as one decay width is known.

1Chien-er Lee and Tze-Chiang Chen, Phys, Rev. D 16, 1489
(1977,

P, Carruthers, Phys, Rev. 152, 1345 (1966),

3Chien-er Lee, Phys. Rev. D 4, 1565 (1971),

‘M, Jacob and G,C., Wick, Ann, Phys. (N.Y.) 7, 404 (1959),
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Electromagnetic radiation near black holes and neutron
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Analytic solutions to Maxwell’s equations in the Schwarzschild geometry are given. These are obtained by
differentiating a single superpotential, which is valid (and bounded) at and everywhere outside the
gravitational radius. The results have application to black-hole and neutron-star electrodynamics.

1. INTRODUCTION

Several techniques have been used by a number of
authors including Wheeler, ! Mashhoon, * Mo and Papas, ®
Stephani, * and Cohen and Kegeles® to reduce the elec-
tromagnetic field equations in Schwarzschild space to
a single radial wave equation., Iis solutions yield arbi-
trary dynamic multipoles with general azimuthal depen-
dence, >~ and furthermore may be considered as the
radial factor in a Debye potential, in terms of which
the physical E and B components may be constructed
explicitly by differentiation.®=® In spite of the advantage
of analytic solutions for the radial equation, especially
in the Debye potential picture where derivatives of the
function appear in the physical field, no known special
functions solve the equation except in the static limit, =7

Thus, previous work has treated the equation by approxi-

mation methods®=® or numerically.z's'g It is the purpose

of this paper to give analytic solutions to the radial
wave equation.

In addition to the radial equation derived in Refs.
1— 5, an eguivalent equation corresponding to a spheroi-
dal decomposition of the field has been obtained by
Bardeen and Press, !* Teukolsky, !* and Cohen and
Kegeles.® In Ref. 5, the viewpoint is again that the solu-
tions are interpreted as Debye potentials which yield
the field components by differentiation. However, it is
the spherical radial equation of Refs. 1--5 which is
treated in the present work.

This equation is
A3 (A%, R) +[ B2 11+ 1)r?AY )R =0, (v

where A’ =1 - 2M»™, 3, denotes differentiation with
respect to », and M is the mass. In the orthonormal
frame

w'=Adl, w'=Bdr, W=vdb, *=rsinbde, (2)

where B* =A%, the physical electromagnetic field com-
ponents are®

By =1(1+ 1)v? exp(— tRU)R, ,(¥)Y ™8, &),
B, =Av " exp(~ ikt)3,R;,0,Y7,

PPresent address: Theoretical Physics Institute, University
of Alberta, Edmonton, Alta., T6G 2J1, Canada,
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By =i mAvt exp(- ikt)3,R,, YT /5inb, (3)
E; =0, E,=-kmBr!exp(-ikt)R,,Y7/sinb,
E,=-ikBrtexp(~ikH)R,, 3 Y7.

These are the magnetic multipoles; the electric multi-
poles can be obtained via the duality rotation £ - B,
B—~~FE,

The remainder of this paper will be devoted to solving
Eq. (1) and studying the properties of the solutions
Rz};(’)’).

1. COORDINATE TRANSFORMATIONS

Equation (1) takes a useful form when the radius is
expressed as a multiple of the gravitational radius 2M,

L= xMa Rl+[ (1~ xN) - 2R =0, (4
where
o=2Mk, A=1(1+ 1), and x =7/2M. (5)

When expressed in terms of the variable'?
y=x+In(x-1), (8
the equation takes the simple form
’R+ (a?-2g)R=0, 7

where g=(x - 1)x° (cf. Ref. 13 for a treatment of the
scalar field). The maximum value of g (at x =3) is #.
When o > 4)/27, the solution has a wave character in
the entire region 1<x <=, But if o’ < 41/27, there are
two transition points (for 1<x). Between these transi-
tion radii the solution takes the form of a sum of decay-
ing and growing exponentials of varying growth rate.?
(In the case of gravitational perturbations this barrier
effect was noted by Regge and Wheeler'? and by
Vishveshwara. '*) The transition points, which can be
found by solving for x in the expression

g={(x~1x= :az/)\, (8)

are located at x~1.01 and 10 for a typical pulsating
neutron star’®!® of mass 1.2 m & and pulsation period
0.5 ms. Since the radius of such a star is ~10 km,
typical neutron star surfaces are in the region of ex-
ponential dependence, which extends out to about 40 km
or ~4 neutron star radii,

© 1978 American institute of Physics 833



1. INTEGRAL EQUATION

An integral equation" for R can be obtained from Eq.
(7, e.g., via Green’s function techniques. If the Ag
term is moved to the right side of Eq. (7), the equa-
tion becomes that of a harmonic oscillator with an in-
homogeneous driving term which is a function of R,

3R+ o'R=gR. (9)

Proceeding as if the inhomogeneous term is known and
solving via Green’s functions, we obtain the integral
equation of the Volterra type,

R(v) =f(v) + rxa™ fy :sina(v - Mg(mMR(n) dn, (10)

where f(v) is the homogeneous solution
Av) = Cyexpliay) + C, exp(-iay). (11)
By using Eq. (6), this integral equation can be ex-
pressed in terms of x,
R(x) =fly) + 2™ [ sinaly(x) - (D) |R(E) 2 dt
{12)

(£~ x) where 0<x; <% and 0< x <, Equation (12) can
be solved via iteration. The procedure involves the
kernel

K(x, £) = xa £ sinaly(x) - v(£)] (13)

as follows: Let the zeroth approximation for R vanish,
Ry(x)=0, which with Eq. (13) implies that the (n+ 1)st
approximation is related to the nth via

Roal) = Ryl + [7K(x, OR,(8) dE, (14)

where R, (x) =f(y{x)).

That the iteration procedure converges can be shown
by induction. First we show that the first approximation
is bounded by

|R1(X)’ = .f()’(x))i = )01 expliay) + C, exp(- iOly)l
<|C|+ |Gl =D (15)

by the triangle inequality. Next we show that the djffer-
ence between the (2 + 1)st and the nth approximations
is bounded by

|R, (%) =R (x)| < DB"(n1)t|xy ™ = x|, (16)
where b=x]al™, The proof by induction is as follows:
From Eq. (15) we see that Eq. (16) is true for n=0. If
we assume that it is true for n we find
| Rpug(x) = Ryt (%) ]

= | [ dER(x, 9lR,(8) - RO
Use of Egs. (13) and (16) brings this into the form

<| [razoe? sinaly(x) - y(8)]

X Db (n!)txyt - £
< l f"d(g-l) lxal _ i'll"Dbnd(Vl! )-1
*y
X sinalv(x) - 2(£)]]
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<DE" Y (n+ D) 2yt - x7t
x| sina{v(x) = v(8)]| jax

< DB (n+ 1)1 ]

xo-l _ x-l } n+l

which implies that it is true for all »n. This establishes
Eq. (16).

It is possible to obtain the upper bound of the (N + 1)st
approximation using Eq. (16) as follows:

N
Ry (¥) = Ry(x) + 25 R,y (%) = R, (x)] (17a)
n=1
4,
<D+D25 8" m! )™ xg™ - x|, (17b)
n=1
In the limit N —= we obtain the bound on R,
R(x)< Dexp(b|xy™ - x7), (18)

where b=1(l + 1)(2Mk)-L.

Thus Eq. (18) shows that for k¥ #0, the solution is
bounded everywhere in the range 1 <x < «; the solution
does not diverge anywhere in this range, not even at
X = 1.

V. SERIES SOLUTION

In this section we construct a series solution valid in
the range 1< x <<, This cannot be done by expanding
Eq. (4) around x = 1 because the series solution con-
verges only in a circle out to the nearest singularity.
Since x =0 is also a singular point of the equation, such
a series solution converges only in the region 1<x<2
and thus is not useful for our purposes.

This difficulty can be circumvented by mapping the
region 1 <x <« into the region from 0 to 1 and by map-
ping the region 0<x <1 into the region 1 to <. Then the
series solution in the new space covers the desired in-
terval when mapped back into the original space.

The desired transformation is z=x"!. In this vari-
able, the differential equation (4) takes the form

~2%9,[(z = 1)2%3,R(2) ) + (a*(1 = 2)' = 2R =0, (19)
or the alternate form

3R +p(2)3,R+q(z)R=0. (20)
Here we have

pla)=Bz2-2)z2 2z~ 1D =(z- D 4227 (21a)
and

gz) =atz4(z - )2+ 227z ~ 1), (21b)
In terms of the parameter 0=1~2, Egs. (21a) and
(21b) become
PO =m0 420 =D b, (22a)

n=0 n=wl

g(0) = %602 2 (n+ 1) +2)(n + 30" ~ 2o 15 (n + 1)o”

n=0 n=0

q,0". (22b)
2

HWE

A Frobenius series expansion®
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R(o) =2 v, 0™ 29)
n=0

converges in the range |g| < 1. Since 0=1-2=1-x"!,
we have |1-x"'] <1 and thus the series is valid for
lsx <o,

Substituting Eq. (23) into Eq. (19) gives

0=0" f) v.[(n+B8Yn+p - 1)om?
n=0

—+B)" T pac™ 0" T ga0"]. (24)
m=wl m=a2
The vanishing of the ¢®7 term gives 82 =~ o while the
remainder of the v, are related by

R
et +8)E+B -1 =20 v,(n+B)Psrn

n=0
k
+23 Voly o, =0. (25)

n=0

Hence we obtain the recursion relations

k-1
V= k-l(k + 26)_1 Z) [2(72 + B) = Qk-n-2]yn (263.)

n=0
with

Gro= 6"+ Dn+2)(n+ 3) —n), (26b)

subject to B =+ia. If we set vy=1, then we find
vy =(48% + 28 + N(2B + 1), ete., with v (ia)=v,(~ia).
In terms of the variable v, the series solutions are

RW(x)=(1-x)i® i v(ia)(1 - xt)" (27a)
n=0
and
RO() = (1= x1)@ 5 v (= ja)(1 - x)r, (270)

n=0

These solutions are valid in the range 1< x <* and the
general solution R(x) is a linear combination of these,

R(x) =A,RY (x) + A,R®)(x). (28)

Note that for @ =2kM #0, the solution does not diverge
in the range 1 <x <> anywhere, not even at x =1, This
result is in agreement with that of Eq. (18).

V. FAR FIELD SOLUTION

In this section we give the far field solution to the
integral equation (12). This can be done by letting x,
~> and gives

R™(x) =expliav(x}] + ra™ f:sina[y(i) = y(x)]
XR™M(8)E2dE, (29)
Here v(x) is given by Eq. (6) and we have taken for f

the oul going wave at infinity f= expliay(x)]. The
definition

falx) =R, (x) = R, (x) (30)
brings Eq. (17a) into the form

R(x) :izof,,(x) (31)
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in the limit N— =, From Eqs. (30) and (14) we have

Folx) = Ry (%) =f(y(x)) = expli ay (x)), (32)
and

fn#l(x):' L”K(x9 &)fn(ﬁ) dE, (33)

where K(x, £) is given by Eq. (13).

The above method of solution is equivalent to

R(x) =R, (x) + [ “K*(x, YRy(8) d§, (34a)
where

R¥(x, =5 K5, 9, (34D)

Ky(x, £) =~ K(x, §) =bE? sinay(§) - y(v)], (34c)
and

K,(x, 9= [ Ky(x, DK, (1, ) dn. (3ad)

A straightforward method of showing this is to con-
vert the Volterra type equation into a Fredholm type
and then to iterate successively.® In other words, sub-
stitute the expression for R(y) in Eq. (10) for R(7) and
obtain an expression of order AZ, and repeat to obtain
an expression of order A", The series (31) and (34b)
converge uniformly for all x> 1 [at least as well as
3 o(b/%)"(n! ) = exp(b/x) since D=1 in Eq. (18)]. For
large x, we obtain the solution to the differential equa-
tion (7),

R®(x) =explialx +In(x- D1 +0(x Y +-..], (35)

since y(x) =x + In(x = 1), Only R,(x) needs to be consi-
dered for this estimate since higher approximation
gives extra terms which fall off faster than x™.

V1. CONNECTION CONSTANTS
The constants connecting the series solution (28)
with the far field solution can be found by using Eq.
(29). In exponential form, Eq. (29) becomes
R™(x) =explioy(x)] + AM2ia)™!
*{expl-iay()] [~ expliay()]RW (92 at
- expliav(x)] f;exp[— iay(&IRW(8 e det,  (36)

where R*'(%) is given by Eq. (29) and y(¥) =x + In(x - 1).

Since the [~ can be replaced by [”~ /;*, we can use
the inequalities (18) and |exp[+iay(£)]! < 1 to obtain

R(x) = expliay(®)][1+in2a) " expl- iay()]R(E) E2 dt
+0(x - 1)] - exp[- iay(®) J[ir2a)?
x [ "expliay(9)R(&) 2 dg+ O(x - D], (37)
Comparing this with Eq. (28) [and noting that (1~ x-1)%*

=explia In(x ~ 1)]] for x=1 gives the connection
constants

Arenstorf, Cohen, and Kegeles 835



Ap=explia)[1+iM2a)? [ " exp[-iav(8)]£?

X 25 fo () dE),
n=0 (38)

Ay =— exp(~ia)[ir2a)™? flm expliay{s)]
XE_Ofn(&)z-2 dg|

which provide the relation between the near and far
field solutions.

VII. ASYMPTOTIC EXPANSIONS

In this section we use an alternative procedure?’ to
obtain a few terms in the asymptotic expansion. Carry-
ing out the indicated differentiations in Eq. (4) gives
(1-x12 R+ (1-xYx23.R

+la? =P -xYR=0 (39a)
or

2R + g (X)3,R + g, (x)R =0, (39b)

with
-1

g = =17 =5 g0 =i (v - D7 = A ().

This equation has singularities at x=0, 1, and =.

The procedure to be used here is to factor out certain
singular parts of the solution and then to work with the

remaining parts. The substitution
R(x} = {x -~ 1)°U(x) (40)

reduces the order of the singularity at x =1 and gives
the equation

U + Py(x)3,U + Py(x)U =0 (41a)
with

Py(v)=(1+2p0)x (x = 17

Py(x)= = [P*x(x + 1)+ p + AJxMx = 1, (41b)

p=tia.

There is an essential singularity at infinity as can be
seen from Eqs. (20) and (21). This singularity can be
handled by factoring out of the solution the predominant
exponential behavior exp(+ px), and using the substitution

U{x) = exp{px) 4{x) (42)
in Eq. (41). The resulting equation is

2+ Py(x)dp +Py(x) =0 (43a)
with

P=20+P;=(1+2px")x"(x - 1),

52 =p? + pP, +Py,=- e - 1), (43D)

Substitution into Eq. (43) of the Laurent series

expansion

plx) =1+727 px (44)

nul

gives

20 bon(n + 1)xmt - ax " P+ ,\""1;2] =0, (45a)

n=0
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where we use the expansions

(45b)

Equating the coefficients of equal powers of x™ to
zero gives

—2pliq = Apy=0 (46a)
from x*, and gives for n > 0
n+l . n
n(n+ 1)y = 25 Ry Py ey = Nt K =0. (46b)
k=1 £=0
Hence we find:
py=~A(2p)7
F = A = 2)(8p%),
. 3y-1 (47)
Hy =~ M48p%) (A = 2)(X - 8) - 12p),
g = M(384p%) (X ~ 2)(A = B)(A = 12) = B0p(r = 4) ],
which gives the resulting asymptotic expansion
R(x) = (v = 1) explpx) [1 +25 4y, ,\""] . (48)
n=1

VII1. DISCUSSION

A power series solution to the Schwarzschild electro-
magnetic radial equation covering the entire region from
the gravitational radius to infinity has been derived and
is given by Egs. (27a) and (27b) of Sec. IV. In addition,
the asymptotic solution is given in Sec. V and a method
for matching this far-field solution to the series ex~
pansion is presented in Sec. VI; use of this matching
technique avoids the necessity of summing increasingly
many terms of the series for asymptotically large ra-
dius to obtain a given accuracy. The present method
provides an alternative to the conventional direct nu-
merical integration of the differential equation with the
advantage that the radial dependence is obtained
analytically.

An extension of the Debye potential formalism to
other spin values has led to similar scalar wave equa-
tions for neutrino and gravitational perturbations of
space-—‘cimes.21 The methods of this paper can be used
to solve the resulting neutrino and gravitational radial
equations (see also Refs. 12,14, and 22-—24) for the
Schwarzschild black hole or neutron star in close an-
alogy with the electromagnetic case.

The analytic solutions of this paper are useful for
astrophysical calculations involving these types of fields
near nonrotating black holes and neutron stars. 25
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Semiclassical quantization of a field theoretic model in any

number of spatial dimensions
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The semiclassical canonical quantization of the nonrelativistic logarithmic theory is done in any number of
spatial dimension d. Instead of the usual expansion of the Hamiltonian about the classical fields, we
propose an alternative route to semiclassical quantization by making an expansion around the charge
operator. When we take the value d =0 in the energy expression, the exact zero-dimensional spectrum is
obtained. The mechanism of confinement characteristic of these logarithmic theories is also discussed.

I. INTRODUCTION

Recently a lof of effort has been concentrated in the
study of semiclassical methods of quantization in field
theory. =* By using these nonperturbative instruments
the spectra of a large number of (1 + 1)-dimensional
models were obtained. Here we succeed in performing
the semiclassical quantization of a theory in any num-
ber of spatial dimensions.

The model which we quantize is just the nonrelati-
vistic logarithmic theory proposed by Birula and
Mycielski. "

The relativistic logarithmic theory'*=*® has been in-
tensively studied by us. In Ref. 11 the stability of its
soliton-like solutions was discussed, whereas the set
of these solutions was considerably enlarged in Ref.

12. In Ref. 13 we pointed out the remarkable fact that
the logarithmic theories exhibit confinement. Unfortu-
nately, up to now we have not succeeded in quantizing
the relativistic version of the model—the main difficulty
coming from the question of renormalizability of the-
ories with logarithmic nonlinearities.

The nonrelativistic logarithmic theory shares the
most interesting features of the relativistic one (soli-
tons and confinement), and—at least up to WKB quanti-
zation—it does not display any trouble concerning to
renormalization. This is the reason for studying it in
this paper.

The model is presented in Sec. II. There the stability
equation is obtained and solved, leading to a discrete
set of stability angles. The mechanism of confinement
is discussed in the context of this non relativistic
theory.

In Sec. 1l we compute the static spectrum of the
model by using the DHN quantization formula. 1,27 The
computation is done in any number of spatial dimen-
sions. We show that, extending our energy formula to
dimension zero, the exact zero-dimensional spectrum
is obtained.

The canonical quantization of the theory is performed
in Sec. IV. There, besides the static spectrum, the
kinetic part of the energy is also obtained. Since we
use collective variables, our method is similar to

asypported in part by FAPESP (S80 Paulo, Brazil),
Y gupported in part by CNPq (Brazil),
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those of Refs. 4—6. But, an important difference de-
serves to be pointed out: instead of expanding— as
usual—the Hamiltonian about the classical field (soli-
ton), the expansion is done around a leading operator.

In the present case the suitable leading operator is just
the charge. So, our approach is expected to hold only

in the computation of the energies of large charge states.
The canonical commutation relations are satisfied in

a semiclassical sense.

Conclusions are left to Sec. V, while three appen-
dixes complement some calculations of the text.

Il. THE MODEL: SOLITONS, STABILITY AND
CONFINEMENT

The model that we investigate here is defined by the
following Lagrangian densitym:

L', @) =ip'a,0 - U (¢, @),

where ¢ represents a complex scalar field and Ulg', )
is given by

(2.1

1 1
U(¢", @) =5 =3,9"0,9 -5 ¢'¢[In(¢"0a) - 1.

(2.2)

In expression (2.2), I, 1/m, and « are dimensional
parameters while d stands for the number of spatial
dimensions.

The Euler— Lagrange equation resulting from (2.1) is

1 1
i3, +ﬂa’2‘(’0 +W1n(<p*cpdi)<p:0ﬂ (2.3)

The energy associated with a certain field ¢(x, ¢) is

given by

E= [d'xUle', 9), (2.4)

whereas the other conserved quantity (the charge) will
be

Q=[d%x ¢'(x,t)o(x, ). (2.5)

We are interested in the following family of classical
solutions (solitons):
@,(x, 1) =Aw) exp(~ iwt = x*/21%). (2.8)

Plugging the field (2. 6) into the equation of motion (2. 3),
we obtain the allowed values of A(w):
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A(w) =a?’? expld/2 - m P w). (2.7

The solution (2. 6) describes an spherically symmetric
extended object on its proper rest frame. The energy
and the charge associated with this classical particle
are given respectively by

Ey(0)=(VT1/a) (w + 1/2ml*) exp(d - 2mP w), (2.8)
and

Q) = (VT /a)* expld - 2ml*w). (2.9)
A. Stability

In order to study the infinitesimal stability”"!! of our

particle, we add to the classical solutions (2.6) a
small fluctuation

o(x, 1) =@, (%, 1) + exp(~ iwt)n(x, #), (2. 10}

Using this representation for ¢(x,¢) in the equation of
motion (2. 3) and retaining terms up to first order in
7(x, t), we obtain the linearized stability equation:

. 1, x (+a) 1
[z8,+——a, + n= g

2m * T oamlt T 2mlt (2.11)

Now we may verify, by inspection, that the solutions
of Eq. (2.11) are of the form

d
They oo 1y (X 8 :[Hl hki(xi/l)] [Akl.o.,,d explivg wt/27)

+[KMVE 4 (& - DV

XAY ..y, expl= ivE wt/Zw)], (2.12)
where Akl"'ka is a complex constant, 4, is the normal-
ized kth eigensolution of the unidimensional harmonic
oscillator, the integer K is the sum

K:}E) ki, (2.13)
121
and the stability a.nglesl'2 vk are given by
vk =+ @1/mlPo)[KE - D]/2, (2.14)
We observe that there are'*
DK, d)=(K+d-1)!/K!(d~1)! (2. 15)

configurations of the set {#;} that satisfies (2.13). Then,
each ¥ has a degeneracy of order D(X, d).

Since in the present case all stability angles are real
numbers, we conclude that if a given fluctuation is
infinitesimal at { =0, it will remain infinitesimal for
any other time. So we say that the solutions of the type
(2. 6) are stables ones.

The stability angles (2. 14) are the basical ingredients
for implementing a WKB quantization of the model, '+?
This quantization will be presented in the next section.

From (2. 14) we see that v, =%, =0. y;—having a de-
generacy of degree d [see (2. 15)]—is associated with
the translational invariance of the theory, whereas y¢—
which has no degeneracy— is the zero frequency mode
correspondent to gauge invariance.
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B. Confinement

Here the mechanism of confinement will be discussed
in the context of the nonrelativistic logarithmic theory.
The same phenomenum occurs in the relativistic the-
ory, as shown in Ref. 13. For these logarithmic the-
ories confinement happens to be a consequence of the
nonexistence of the weak field limit.

Let us define the theory in a cubic box of volume o
with periodic boundary conditions. L is such that L
>, a, 1/m, and later we will take the limit L -,

Consider a plane wave solution of Eq. (2.3)

Pr (X, 1) =A(K, w) expli(kx - wf)]. (2.16)

From direct substitution of (2. 14) into (2. 3) we obtain
the relation

w=(1/2m)[K* = (1/P)1n(| A|%a®)).

The energy associated with this solution will be

(2.17)

Ek, A) =(]A[2/2m)L{K* = (1/1)[In(| A |2a?) - 1]},
(2.18)
whereas the charge is
Q(A) =(|A|*/2m)L?. (2.19)

From (2.15), (2.16), and (2. 17) we get the following
pair of relations involving w, k, £, and @:

wlk, Q):T}ﬂ {18-212 [m <Q<§)d)—l]} (2.20a)
d
) E(k,Q):Q{kz—ll[ [ln(Q(%)d)— 1]} (2.20b)

Now, since k is always positive [otherwise ¢, will
not be a solution of (2.3)], in the limit L ~= we get

wk, @) == and E(k, Q) ==, (2.21)

This means that in the infinite volume limit we have no
plane wave solutions for the classical version of the
theory. We have no excitations around the vacuum (¢
=0). This is confinement. It follows from the fact that
the Lagrangian (2. 1) is nonanalytical in |¢{? when [¢|?
=0, It does not occur in any polynomial Lagrangian.

On the other hand we have seen that there exist ex-
citations around the soliton (2.6), Obeying Eq. (2.11),
these excitations are just linear superpositions of the
solutions (2. 12). The achievement is obvious: In the
logarithmic theories, guantum fluctuations can mani-
fest themselves only in the presence of a soliton that
works as a bag for containing them.

We emphasize that the fluctuations (2. 12) go to zero
rapidly when any ix;! grows. This means that they are
really confined within the soliton.

An interesting consequence of confinement is the fact
that the set of stability angles is a discrete one. In
theories where a continuum of stability angles exists,
the sum over this continuum describes states of a soli-
ton plus a certain amount of free elementary mesons
coexisting.? In the present case the continuum does not
exists since we have no free mesons.
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In the relativistic version of the model the same
mechanism occurs, '* There the equation for the fluc-
tuations is also of the harmonic type. There are a
large number of semiphenomenological papers in the
literature where attempts are made to confine quarks
by means of the harmonic oscillator potential— the
trouble is that in those papers the potential is intro-
duced by hand. It is remarkable that in the logarithmic
theories we get the same picture starting from a local
Lagrangian.

I1l. QUANTIZATION IN THE MANNER OF DHN

Here, in order to obtain the semiclassical energy
spectrum we will use the DHN! formula as stated by
Coleman.” We leave to the next section the deduction
of this spectrum by means of a canonical quantization
procedure.

According to the DHN method the classical periods
are “quantized” in the following way:

T Q
dffddx I, (x, e, {x, )

+7 (ni+£(l‘—)> <T@i-'y,-> =27N,

(3.1)
¥ >0 2 dT

where @, (X, /) is the classical solution of period T
(w=27/T), 1,(x,/) is its conjugated momentum, {¥;} is
the set of all stability angles, and D('y,-) is the degree

of degeneracy of each stability angle. Any quantum
state is characterized by an integer N and by the set
{n;; n;=0,1,2,---}. Solving Eq. (3.1) for the various
states, we obtain a discrete set of values for the period:
T(f\], 1y, 19, 0 - ).

The allowed values of the energy are obtained from
the expression’

E(N. My, Mg,y v+ .)
D
:E"l[T(N’ ny, 722)]+ E (ni+ v )>_‘.1L
7420

2 ar

(3.2)

Here Eg’ is the classical energy of the soliton whose
period is 7. It is given by expression (2. 4).

In our case, since II, =i ¢! [see Lagrangian (2.1)],
the integral in (3. 1) must be written as
foT di [d*xigle,. (3.3)
From the fact that the stability angles of this model
have a linear dependence on T [see (2. 14)] we conclude

that the sum ¥, in Eq. (3.1) is zero. So, our periods
1
are quantized by the following expression:

Sl [ atx igle, =21N. (3.4)
Evaluating explicity the integral of expression (3.4),
we get

(7% /a) exp(d — 2ml*w) =N. (3.5)

This condition is equivalent to a quantization of the
classical charge that is given in (2. 9). The equivalence
between semiclassical quantization and charge quanti-
zation was already pointed out in Refs. 15 and 16,
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T=T (N ,n1,n9,°°")

Using (3.5), the quantized values of w are obtained:

wy =(1/2mi¥)[d - Infa/7*21)* - 1nN]. (3.6)
From (2. 8) and (3. 6) we conclude that the classical
energy as function of N is given by

E4(N) =(N/2mi*)[d + 1 - In(a/7*/?1)* - InN]. (3.7

In expression (2. 15) we have the degree of degeneracy
of each stability angle, whereas the stability angles
themselves are shown in (2. 14). Using them, one can
write the sum 3, that appears in (3.2) in the following
manner:

1 2 (K+d-1)!
2mi gty Kl (d~ 11

+—1-z 2 g VEE = 1),
ml K =0

KK-1

(3.8)

The first sum in the above expression—which is
clearly a divergent one—is the vacuum energy (note
that it is independent of the particular state we are
looking to), and so it will be dropped from the energy
formula. Then, using (3.2), (3.7), and the finite part
of (3.8), we get the spectrum

E(N;ny,ngy -

=(N/2mi®|d + 1 - In(a/m* %) - InN]

+{(1/mi) 2 g VE(K = 1).

K=0

(3.9

This is the WKB spectrum of the nonrelativistic
logarithmic model in any number of space dimensions.
Since in particular it holds for d =3, this is the first
time—as far as we know—that a WKB quantization of
a three-dimensional model has been done.

A. Zero-dimensional case

In zero dimension, K is always zero, since the set
{ky, kg, ..., by} is an empty one. So, in this case the sum
in (3. 9) does not exist, and the spectrum can be written
as

E, o(N)=(N/2mi%)(1 - InN). (3.10)

Now we will solve the zero-dimensional version of
the logarithmic model in order to compare the exact
spectrum with (3. 10). Our conclusion will be that
(3.10) is the exact spectrum.

When d =0, the Lagrangian is given by

L(a*, a) =ia*a + (1/2mi®)a*a(lna*a - 1). (3.11)

From it one concludes that the canonical momentum
associated with a is {a*, whereas the Hamiltonian is

H(a*, a) = (1/2mI%)a*a(l - Ina*a). (3.12)

It is well known that after imposing the cannonical
commutation relations

[a,ia*]=i or [a,a*]=1, (3.13)
the spectrum of a*a is given by

Spla*a)=0,1,2,...,N,*°-, (3.14)
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So the spectrum of the Hamiltonian (3. 12) will be just
(3.10).

IV. CANONICAL QUANTIZATION

In this section we perform the canonical quantization
of the model. Our procedure has much to do with those
of Refs. 4,5, and 6, even though some important dif-
ferences must be stressed. In order to point out these
differences, we shall start this section discussing the
main ideas upon which our method is based.

The fields ¢(x, ) and its momentum II(x, ) =i¢'(x, 1)
can—in a large variety of ways—be represented in
terms of an infinite set of basical canonically conjugate
pairs of operators {(ay, by); (ay, b1); (a5, by); -+ -}. Let us
consider the class of states {la," - - - )s}—a;" being the
nth eigenvalue of a,—where the eigenvalues of a} are
very large when compared with the mean square values
of the other basical operators (with the exception of b,
the momentum of ay); i.e.,

(@ (ay, - |d|ag, - (4. 1a)
(aon)z >(ag, - ‘bzi’aon, - (4. 1b)
for all i#0.

When dealing with the mentioned class of states, it is
natural to consider a; as a leading operatoy and to treat
the other basical operators as fluctuations about it. So
an approximate—and eventually soluble—Hamiltonian
can be obtained by an expansion around a, retaining
only terms up to second order in the nonleading opera-
tors. The following observations can serve as a brief
outline of what we are going to do:

(i) In the present model the leading operator about
which the Hamiltonian is expanded is the charge oper-
ator. So our approach is expected to hold only in the
description of large charge states.

(i1) The representation that we choose for the fields
is designed to satisfy the semiclassical canonical com-
mutation relations

[o(x, 1), Iy, t)] =i5(x ~ y) + O(1/V ay).

Then, locality is guaranteed at least in a semiclassical
sense.

(4.2)

(iii) Up to quadratic terms in the nonleading operators
the Hamiltonian decouples into an infinite set of partial
Hamiltonians, each of them depending only a given pair
of basical canonically conjugate operators, i.e.,

H:Ho(ao) +H1(a1, b1)+H2(a2, b2) 400

+[terms of order greater than 2 in

ay, by; @, by; etc. ] (4.3)

The partial Hamiltonian H, is independent of b, (the
momentum of a,). Within the spirit of the approxima-
tion explained previously the terms of order greater
than two in the fluctuations shall be dropped from the
total Hamiltonian. Then the task of getting the spectrum
becomes a very easy one because it suffices to sum up
the energies of an infinite set of decoupled partial
Hamiltonians.

We stress that our approach is different from the
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usual semiclassical quantization methods, since instead
of treating fluctuations around a classical field we do
an expansion about a leading opevator.

The Hamiltonian and the charge of the nonrelativistic
logarithmic theory are—as we recall—given respec-
tively by

1 1
H= d"x{—zm 3,0 axcp_——“ml o'o[ln(¢T@pa®) - 1] (4. 4)
and

Q=[d’x9¢%. (4.5)
Before exhibiting the basical operators and the field
representation convenient for our case, we must intro-
duce a complete set of functions of the coordinates.
Being {k,, %y, ..., k4t a set of d nonnegative integers,

we define
d %,
F(,,.}(x):l'l ]’lk <—1>, (46)
i ja I\1
where %, is the kth normalized real wavefunction of the
unidimensional harmonic oscillator. To some of these
functions we give an abbreviated notation:

(a) The first one, where &, =0 for all j, we name
Fy(x), i.e.,
F(o,o,-~-,o)(x)=Fo(X), (4.7a)

and we recall that, since F(x) is normalized, it will
be

1 d/2 XZ
Fy(x) = <l_nn7> exp <— W) ;

{b) The functions (4. 6) where k,=1 and #; =0 for all
j#s we name F(x), i.e.,

(4.7b)

F(O“'ks=1“' 0)(X):Fs(x). (4u 8)

A. The basical operators

We will build fields with the following basical Hermi-
tian operators:

(a) the pairs (A(#), 8(t)) obeying the commutation
relation

(b) for each spatial direction s we define a pair of
canonically conjugate operators (z,(t), 5:()), whose
commutation relations are

(4.10a)
(4. 10b)

[Es’ﬁs‘]:iéss':

[Es’ Es']z[l;s,,i;s']=0-

From now on i(ﬁl will stand for a vector whose sth
component is Es(ps). Latter on we will interpret zZ as
the position of the center of mass of the particle de-
scribed by a given state (collective coordinate*~8),
whereas the eigenvalues of p will be related to the mo-
mentum of that particle.

(c) for each set {k;}, such that K =3%_%, >1 we also
define a pair of canonically conjugate operators
(@) (8), 4,1 (). Their commutation relations are
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[ag, bug)]=i5ck,}(kg1

:i6k1,5k2k§“°6’2dké’ (4911a)

(age,), Areg))=[bee,), biagy ] =0. (4.11b)

The remainder commutation relations among the basical
operators are the following:

[AJ é\.s] :[A,f;s]:[A; (l[ki)]:[A, b(k{}]: 0, (4 12a)
[9: gs]:[e;f;s]:[e: a(}zi}]:[exb(ki)]zos (4*12b)
and
[Es, a(}zi)]:[gs, b(ki}]:[ﬁs’ a{ki)]:[fgs; blki)]zoc
(4.12¢)

B. The field representation

We are now in a position to present the field repre-
sentation that will allow us to perform a WKB quantiza-
tion of the model. In terms of the basical operators de-
fined in the last subsection the field ¢(x, {) will be writ-
ten as’

. L il & )
o(x, 1) = exp(i6) [BFO(X— ) +—23m S F(x—- z)fﬁz
s=1

+ 25 (ag, +iby ) )Fe, ) (x-2), (4.13)
{e, K1) : t
where the operator B is given by
RS 2 1
B.—[A—"—— L/ (a(ki)+b(ki]_2] a (4.14)

2 A {e) K51}

Since the basical operators are Hermitian ones, the
field ¢'(x, #) must be

. il & p .

o (x, 1) = [BFO(x ~-2z) - 52172 Z"ﬁng(x -2z)

s=1

b5 (agy) = ibi ) Fiep(x- i)] expl~ i6).
e K1)

(4. 15)

At this point it is appropriate to establish some connec-
tion between the operator approach developed here and
other semiclassical methods of quantization.

As we shall see shortly, the operator A is just the
charge. It is the leading operator about which the
Hamiltonian will be expanded. We will consider only
those states where the eigenvalue of A is very large
(a more specific definition of what we mean by very
large will be given latter on). This fact allows us to
see the scheme outlined before in a different way:

Suppose that we remove the nonleading operators
from the field representation (4. 13), so defining what
we call the leading part of the field ¢, (x, ¢):

ar2 _oy
@ (x, )= exp(iB)A1/2<l—ﬂIl—,7) exp [— 9{—272?)-}

(4. 16)

An expansion of any function of the fields about A is
equivalent to an expansion around the leading field

¢ (x, ). But ¢, (x,{)—even though being an operator—
has a remarkable ressemblance with the classical soli-
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ton (2. 6) (a soliton whose center of mass position is z).
In this sense we may say that the approximation which
shall be done here is equivalent to an expansion of quan-
tum fluctuation around the soliton itself.

C. Charge quantization

Since { Fy; Fy; Fiy )} constitute an orthonormal basis,
the charge operator @ defined in (4. 5) will be
B lz I;z E 2 bZ ;
+53t {a{k,.) + e,y T ilage,), by It

4.17)
2 A w1 (

Now using the commutation relations (4. 9a) and the
expression (4. 14) for the operator B we conclude that

Q=A (4.18)
as mentioned above, So the charge operator is the mo-
mentum conjugate to 6:

(@, 8]=i or @=i—0

=5 (4.19)

Then the eigenfunctions of @ must be of the form

¥ 4(8, ¢;) =exp(-iq8)R(c,), (4.20)
where g is the charge eigenvalue and c; are others
basical fields variables different from 6 and @.

Well, but 8 is a cyclic variable; i.e., if we change
6 into 6+ 2nw (1 being an integer), the field operators
@(x,1) and ¢'(x, t) does not change [see (4.13) and
(4.15)]. So, in order that the wavefunctional (4. 20) be
single valued in the space of field variables, it is neces-
sary that the eigenvalues ¢ be quantized in the following
way

4y =N, (4.21)

where N is an integer. And since the charge operator
@ is defined in (4.4) as the sum of nonnegative opera-
tors, N must be nonnegative.

D. The WKB approximation

Plugging the fields ¢(x,?) and ¢'(x,#) into the Hamil-
tonian (4. 4) and performing the spatial integration, we
obtain this Hamiltonian as a function of the operators
Q (or 4), p, ag,) and by,

Note that, since H does not depends on 6 nor z, it
commutes with @ and p,

Now we will explain what the WKB approximation is:
Look first over the operators

R{k,}:az(kiﬁb%ki)—é‘u (4. 22)

From the commutations relations (4. 9a) we deduce that
the eigenvalues of Ry,; are nonnegative integers: #,,).

Let us consider the class of states IN, p, Vi) *
(where p is an eigenvalue of p) whose charge is very
large when compared with lzp2 and 3 g, 50051 Vigy)y 1€,
states where

N> 1 (4.232)
and
N> 7 ) (4.23b)
{ky3K>1}
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Condition (4. 23b) also implies that
N>(ah), (b)) (4.249)

Then, in dealing with states that obey (4.23) (or linear
combinations among them), we take @ to be the leading
operators. The operators P, @u,;, and by, are con-
sidered as small fluctuation about it. In this way we
expand our Hamiltonian around Q vetaining only terms
up to second ovder in P, Qryy and b(kﬂ’ This is the
WXKB approximation.

E. The expanded Hamiltonian

Due to the fact that @ commutes with p, ag,), and
b1, the above-mentioned expansion is unambiguous
and easy to do. It is performed in Appendix A, and the
resulting Hamiltonian is

Hy(Q) + Hy () + 2 Hy (@) b)) (4.25)
Q7 {ry3K>1}

where

H@ =y [+ 1-1n (%) - n@ (4.26)

B oml - Ty ’ ‘
the kinetic Hamiltonian H,(p/Q!/?) is given by
p\_ 19
and each one of the partial Hamiltonian Hy, , is
1
Hyyy = — (Kb, + (K = Ddly,y) (4.28)

We recall that K =314, &,.

The quantization of Hy(®) is trivial. Since we have
seen above that the eigenvalues of the charge operator
are gy =N, the eigenvalues of Hy(Q) must be

Ey=2 o (d+1-1 ‘Z)d InN
¥ " 2ml -mTr) T °

The diagonalization of each one of the partial
Hamiltonians H(k” is very simple. Due to the fact the
coefficients of a{ki, and b[k .1, in (4.28), are positive
numbers, we recognize H(h} as the Hamiltonian of an
harmonic oscillator. Then it has a discrete set of
eigenvalues:

[K(K - D72
ml

(4.29)

1 [K(K - )]/

{k,)+§——z——,

o (4. 30)

En{kﬂ =

where i) is an integer.

Being p an eigenvalue of ﬁ, it is obvious that the
eigenvalues of the kinetic Hamiltonian Hy(p/Q*/?) are

Ey(p) =(1/2mN)p’. (4.31)

Then the spectrum of the total Hamiltonian (4, 25) is
given by

E(N, B, nis,)) =5y [d+1—ln(—1—ani>d-lnN:‘
*tudon KU
i {k1.7;>1); [K(Km-lfl)]”2 + Zrinz' (4.32)
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The second sum in the above spectrum, the one in-
dependent from the state we are looking over, is the
vacuum energy and can be dropped from the formula.

In order to compare the spectrum (4. 32) with that
obtained in Sec. III by using the DHN formula, it is
convenient to define, for a given XK =%%_k%,, the number

nK: E

[EY0 % e

n{ku. (4. 33)

So, in terms of ng, after subtracting the vacuum energy,
the spectrum {4. 32) becomes

E(N’ pZ’ n{k;))

N a \*¢
=5 [d+1—1n(—172—ﬂ Z) —lnN]

(KK - 1)/ 1
+75 Nk +2mNp .

4
K>1 ml

(4, 34)

When we take the value p2 =0 in the above spectrum,
it agrees with that given by Eq. (3. 9),

F. The momentum operator

Now we will show more clearly the connection be-
tween the operator p and the sth component of the mo-
mentum operator P, that is defined by

~ g
P=- /d"x o' (x, )i — @(x, 1). (4. 35)
90X
In Appendix B it is shown that
(2, Po]=i6,,+0(1/@"?) (4. 36)
and
o2 52 4 (terms of third and fourth order in
psa a(ki), and b()z“). (4. 37)

From (4. 36) we conclude that the semiclassical cano-
nical commutatmn relations 1nvolv1ng the c. m. position
operator Z and the total momentum P are preserved in
this scheme of quantization.

In (4. 37) the terms of third and fourth order in the
nonleading operator can be neglected, since this pro-
cedure is in agreement with the approximation done for
the Hamiltonian (see subsections D and E). Then the
kinetic Hamiltonian H; can be written as

H,=(1/2mQ)P* (4.38)
whereas its spectrum is
Ey(P)=(1/2mN)P?, (4.39)

where P is an eigenvalue of the total momentum opera-
tor B,

G. Semiclassical locality

In order to complete our quantization scheme, we
should say that the commutation relation among ¢(x, t)
and its canonical momentum I(x, #) is given by

[ox,t), Iy, )] =i - 6(x — y) + O(1/Q/?).

This equation is deduced in Appendix C.

(4.40)
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Then, when dealing with the class of states satisfying
conditions (4.23a) and (4.23b), the term 0(1/Q'/?) can
be dropped from Eq. (4.40), and we get a local theory.
We recall that the mentioned class of states is just the
one for which the spectrum has been obtained.

V. CONCLUSION

We succeeded in quantizing semiclassically the non-
relativistic logarithmic model in any number of spatial
dimension. Two methods of quantization were used:

{(a) Applying the DHN quantization formula, we were
able to get the static spectrum of the model; (b) in Sec.
IV a canonical quantization was done. There the charge
was treated as a leading operator, and we expanded the
Hamiltonian about it, retaining only terms up to second
order in the nonleading operators. Doing so, besides
the static spectrum we also obtained the kinetic part

of the energy.

From this kinetic energy [see (4. 34) or (4,39)] we
conclude that a state of charge N is the nonrelativistic

description of a particle, whose mass is
M, =mN, (5.1)

that can be interpreted as a bound state of N solitons
of mass ni.

The binding energy of this N solitons system is given
by the static spectrum [see (3.9) or (4.34)]:

E(I\T, n(ki))
N a \*
:m[d%‘l—ln(m) —ll‘le{

(5.2)

Now let us briefly discuss the kind of “physical pheno-
mena’ that is described by the present model. Consider
the theory defined by Lagrangian (2.1) when d=3 and

1>1/m, (5.3)
in this case, the states for which
N 21 /a)t (5.4)

have a binding energy whose modulus is much smaller
than the mass M. Then we are describing a sort of
nonrelativistic “nuclear physics” of nonrotating
particles. !®

Unfortunately—since the model has no fundamental
state—when N is sufficiently large the binding energy
may be equal to (or greater than) the mass My, and the
above picture fails, *°

As a final remark we want to say that this method of
considering the charge as the leading operator may—
in principle—be applied to the semiclassical quantiza-
tion of any theory invariant under gauge transforma-
tions of first kind and exhibiting solitons.
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APPENDIX A

In this appendix we do a Taylor series expansion of
the Hamiltonian (4. 4) about the charge operator @ up
to second order in the nonleading operators. First of
all this expansion is done about the operator B defined
in Eq. (4.4). After this the operator B itself is ex-
panded around Q.

Before proceeding a remark must be stated: It is
known that due to the noncommutativity of the pairs of
basical operators (in powers of which the Hamiltonian
is developed) the mentioned expansion is not well de-
fined. We have the freedom of ordering the operators
that constitute a given term in various different ways.
However—at least when we are concerned with approxi-
mations up to second order in the nonleading opera-
tors—~—each one of these various ways of ordering
amounts only on a particular definition of what the vacu-
um energy is., Here for practical reasons our expan-
sion will be guided by the following rule: The develop-
ment of the Hamiltonian in Taylor series about the
charge is done treating each one of the nonleading op-
erators as c-numbers. Once the expansion is concluded
they turn to be operators and the piece correspondent
to the vacuum energy can be identified and subtracted.

In order to carry on the above mentioned expansion,
it is convenient to introduce an auxiliary field W(x, )
that depends only upon the nonleading variables:

iL o Dy
Wi(x, 1) 1517’2 2 Fs(x~ 2)7577
s=1

=+ _73 (a{ki; +ib{ki})F{ki}(x—i). (Al]

{B;3:K>1})

Note that W(x, () is of first order in the nonleading op-
erators and that it is orthogonal to Fy(x - 2).
The fields ¢(x,1) and ¢'(x, 1) are given by
0(x, 1) =explif)[ BF o(x - 2) + W(x, 1)} (A2a)
and
O'(x, 1) =[BFy(x - z) + W'(x, )] exp(-i6). (A2Db)

Let us look over the product ¢'(x, t)@(x, ) that is a
basical ingredient to construct the Hamiltonian:

o' (x, Nolx, t)
= B F(x - z) + W' (x, DW(x, 1)
+[BFy(x~2)W(x, 1) + W(x, ) Fy(x - 2)]. (A3)
We are interested in the following function of the
fields:
T(x, 1) = ¢ ¢[In(¢’pa®) - 1]. (A4)

Then we expand T'(x,7) about the dominant operator
B*F%(x - 2) going up to second order in W(x, 7) (that is
equivalent to second order in the nonleading operators).
We recall that at this step of the calculations the non-
leading operators are treated as ¢-numbers. So T(x, 1)
can be written as

T(x,{)={,+{; +1, +{terms of order greater than 2 on
w(x, )], (A5)
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where
to=BFIn(B' Fia®) - 1], (ABa)
ty = In(B* Fa®) BF (W' + W), (A6D)
and
ty=[In(B* F3a®) + 1]W'W + 5[(W")? + W], (A6c)

The other product of interest to compute the Hamil-
tonian is a,q;*a,cp. It can be written as

0,090 = 3 (BF )0 (BF ) + 3 W'a, W
+ 3 (BFy)o, W + 3,W'3 (BF,). (A7)

From (A4), (A5), (A6), and (A7) one concludes that the
Hamiltonian (4.4) may be represented by

H=Hy+Hy +Hm

+[terms of order greater than 2 in the nonleading

operators|, (A8)
where
H.= | d% —l—a (BF,)0 (BF)+—LZ
! 2m B VIRV T oy
(A9a)
x[1-In(B*Fia®)|B*FY |
Hy = [ d"x{z—}ﬂ [ (BFa, W + 23 W3, (BF)]
- In(B*Fid)BF (W' + W)l, (A9b)
2ml
and
Hin :fd" {21 o WTe, W - z—l—lg[ln(B Fd) +1]wtw
1
L Yy e
2m oA LW+ Wil (A9c)
Now we recall that
. 1 d/2 _ 12
Fyx-z)= <-—r7’z> exp| - (x_zz_)_i\ ) (A10)
I 2]
and in consequence of this we get
a )2
In(B2F3d) = InB* + In (??rl) - (—x—?ﬂ : (A11)

Integrating by parts the terms having derivatives in
Egs. (A9), and using (A10) and (A11), one obtains

2, (x=2)°
It fdxFox z)[ Loy +—p—

+1-InB -1n (;1?777) ]Fo(x—i), (A12a)
_og
Hyy :lelzfd"x(WT + W) [_ zza3+(—x—ﬁﬂ
d -~
—InB*~1In <?%?) ]Fo(x - z), (Al12v)
and
12
Hin :T;z?fdzx w' [— 123i+(il'2_zl_ InB?
a \¢ L et ]
—ln(—r/rﬂ l) -1 W[+ W], (A12¢)
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From the definition of Fy(x) given in Sec. IV [see
(4.6) and (4.7a)] we have
>\
[-lza§+£’5§zf)—]F0(x_z‘):dFO(x_z). (A13)

Putting (A13) into (A12a) and (A12b), we see that H;
and Hy; are

e B Tas1-mB (-
I = oml? - <7TI7ZZ)

X f d*x(Fy(x-2) (A14a)
and
132 2 a ¢
Hll :W [d—lnB —1n<m> ]
(A14b)

X f A*x(W' + W)F{x - 2)

Since, by construction, Fy(x) is normalized and

W(x, t) is orthogonal to Fy(x - 2) [see (A1)], it follows
that
BB (a4 1= 1B - n( )d] (A15a)
Y aml B /
and
Hyy =0, (A15b)

In order to obtain Hy;, one must substitute W(x, ¢)
given by Eq. (A1) into (A12c). Considering that {Fp,,)}
constitutes an orthonormal set and that [see (4.6) and
(4. o]

(AIB)
one gets (we recall that A =@)

1 a N\ |& 2
Hig= 0 2+d-InB - 7y %:11175
— 2K +d B - ’
+d~1- -1
2ml (’*iT’Ibl) {[ d-1-1In n(ﬂ l> J

Xy = b N @ge;) + gy ) Ay — bz{k,;} (A17)

Now, expanding H; given by (A15a) about the charge
operator, one sees that [B i3 given by (4. 14)]
d
7Qz <d+ 1- 1nQ-1n<—r‘7’27> }

S R 7 ’ d;;A?
amQ ne n(ﬂ, l) —dj 2Py

H =

s=1

1 a \¢
t5 [an+ln<—Tn—1T z> —d]

—
x 2

2
(a(ki)
{ki K >1}

+ b5, - %)
+ [terms in order greater than 2 in the

nonleading operator |. (A18)

Then summing (A15b), (A17), and (A18), we conclude
that the total Hamiltonian (A8) is just that written in
expression (4.25).
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APPENDIX B

Without loss of generality we will deduce Eqs. (4. 36)
and (4. 37) in the one-dimensional theory. There the
momentum operator is

P=- fdxtp —¢

- fdx[ﬂ;hk )] [IZ:')_OBK'hK'(ﬁ):I, (B1)
where
E=(x=2)/l, By=B, B,=ilp/(2A)'?, and

(When K> 1) BK:(ZK +ibK.

Then P can be written as

-~ -

P= ,— E B;ax,fdahx(g Tyl (8). (B2)
Since 7 is the Kth eigenfunction of the harmonic oscil-

lator, the integral in (B2) gives

d&he (8) 7 hp(s) stz [+ DY 2800 40
_K”Zc,(_l',{.]. (B3)
From (B2) one concludes that P will be
P R |
P=57 Dorm[( +1) ¢8ess— K o al. ()

Using the definitions of By that were given just below
Eq. (B1), one obtains

21/2l 5

-~ B ~
P=gmnp-2"l7mnae

91/2 =
+t= .7_12 (K + 1) (g by 4y = by g o). (B5)
K=
From expression (4. 14) one deduces that
B/AY2 —1+0(1/AYY (B6)

and
(B/AY2)2 p2 =2 ¢ [terms in fourth order in the
nonleading operators]. (BT

Finally using (B5), (B6), (B7), and the commutation
relation (4. 10a) one concludes that (4. 36) and (4. 37)
hold.

APPENDIX C
Here we will compute the commutator
1/de(x, 1), Wy, O] =[e(x, 1), ¢"(y, ). (c1)

First of all let us recall that the commutation rela-
tions (4.9), (4.10), (4.11), and (4. 12) demands that

exp(i8)G(A) exp(- i6) =G(A + 1) (c2)
[for any function G(A)] and
[he Fo(O)]= —rnF (& (C3)

where £=x-12.

Using Egs. (4.13) and (4. 15), we conclude that the
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commutator (C1) is given by the following sum:

a+L,ots+Z_/ Qger + Z/ a(k }
s ss’ {ry3K>1)

+ 2 + 5

s,{k 43K >1} ik >1)
(R 3K>1)

(c4)
Asiey} Qe Hry)

whose components are (from now on £=x -z and
P =y~ Z’

=[exp(i9)BF ((£), BF (o} exp(~ i)}, (C5a)

as=[exp(i8) BF (&), — il(p,/AY'?)
+ [exp(i6) Fy(£

F(p) exp(-16)]
)il(hs/AY?), BF(p) exp(~i0)],
(C5b)
s =[eXPEO)F(B)il(py/AY?), = il(B /AN V) F (p) exp(- i6)],
(C5¢c)
@) =[exp(i0) BF(£), (ape,) = ibie, ) Fi,) () exp(- i6)]

+ [exp(ié))(a{k” +ib(,,{ VF e, 1(8), BFo(p) exp(- i0)],

(C5d)
@sie,) = [€xp(i0) Fo(D)iL(p/AY?), (ap,) - ibi,)
X Fp,1(p) exp(~ i6)]+ [exp(if)ap,,
+ b, P F i,y (8), = il (D /A ) F (p) exp(~ 16) ],
(C5e)

and finally
e, i) = [XP(EO) (@gey) + D10 ) F (o) (£), (@pag) = 1b1ay)
XF(k'i)(P) exp(-i9)].

‘Now let us obtain each one of the o terms, The first
one is

=[exp(i6) B*(A) exp(=-i6) ~

(csn

BAF(BFp).  (C8)
Using (C2), we get
=[{B¥A +1)-

BHA)|F((§)Fy(p), (&)

where the operator B(A) is given in (4. 14). Then
rop
[1 iy P A(A+ 1) FO(&)FO(p);

a=Fy(§F(p) + 0(1/A%),
The terms o, are
ao=(=1i1/2}2 exp(i8) BFy(£) (/A ?) Fs(p)
exp(=-i6) — (p,/AY?) F(p) BF,(£)

(C8a)

or

(C8b)

+ exp(i6) F4(£) (bo/A'/*) BFy(p)exp(— i6)
- BF((p)F(8)(ps/AV D)}
= (= il/2 2 Fo( 0P F(0) = o o(p)Fo( &)
+ Fy(B)p Fo(p) = Fol0)F () +0(1/A). (c9)

From (C3) and (C9) it follows that
as=F(E)F,p) +0(1/4).

The other relevant terms are

(C10)
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@iag g1 =[@0r ) + 00,1, Aiag) = 0003 1F 1,1 (8 Fras ()
=8 [buey, awgr] = [20a s 0aay [ F ) (9 Fiag ().
(C11)
From (4. 11) one concludes that

a1 02 = Ot 1wt 1 F i (E)F (g (0). (Cc12)

The remainder terms (as, Qr;}, and @se,}) are not
relevant in the context of our semiclassical approxi-

mation. ase and a,p,) are obviously given by
ase = 0(1/A) {c13)

and

U siry) =0(1/A7),
whereas Q) can be written as
e,y =[exp(i6)B exp(- i8) - Bl(a,) - ibey)) Fo(€) Fia,(0)
+[B - exp(i6) B exp(= i6) [y, j + by, ) ) Fol0) Fr, 1 (8).
(C15)
Using (C2) and the expression for B(A), it is clear that
agp, ) =0(1/A%) (c16)

Then the commutation relation (C1) [that is, the sum
(C4)] can be written as [see (C8), (C10), (C12)—(C14),
and (C16)]

(C14)

Fo( zG’)F()(P) +E F(&)F(p)

+ 22
(e K>1)
{k4 K051}

6(}:')(k'{)F{kl)(g)F(k;)(p)- (c17m)

Taking in account the fact that £--x - Z and p =y- Z
it follows that

e, t), 9" (y, )]
= FO(X - E)Fo(y - i)

+2 F(X=2)F,(y-2)+ [Z,) Fia, (X = 2)Fpay(y - 2)
s ki

+0(1/A%), (C18)
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And since {Fy, F,, Fs,}} is a complete orthonormal
basis, we obtain expression (4. 40):

[e(x, ), ¢'(y, )] =6(x ~ y) + O(1/A/?), (C19)
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An internal symmetry, which is based on a generalization of SU(3) in analogy to the external Poincaré
group, is proposed for elementary particles. The so-called exact symmetry limit is assumed to be valid in
some intrinsic “rest frame,” while the symmetry breaking is geometrically obtained by leaving this frame
by some defined SU(3) boosts. The baryon number, which SU(3) does not fix for a given representation,
can be defined here in analogy to the ordinary helicity. Thus it can be used to characterize some
restricted SU(3) representations which provide the basis for a generalized quark model. Two kinds of
quarks exist in the theory: the conventional ones and pseudoquarks possessing unexpected leptonic-like
properties. For the quarks of the first kind strong currents are constructed and a strong interaction model,
built as local couplings of those currents, is also presented. The model is consistent with dual quark

diagrams and contains a mathematical mechanism by which n quarks and # antiquarks enter an
interaction vertex only if n —7=0 (mod 3). Finally the mass operator is discussed in the light of the

proposed symmetry.

. INTRODUCTION

From its very beginning internal symmetry for ele-
mentary particles was introduced as a broken one.
Nevertheless, the concept of an exact symmetry limit
is very popular, and even particle states are still
classified (without solid justification) according to the
irreducible representations of the exact symmetry.
Several attempts have been made to generalize the
SU(3) internal symmetry, most of them by considering
higher SU(n) symmetries, 12 but from the symmetry
breaking point of view nothing has been changed. Here
we present a nonconventional approach to symmetry
breaking. We propose an internal symmetry group
built in a natural analogy to the Poincaré group, the
only continuous symmetry group which is physically
exact, We call this new symmetry group: the hyper-
Poincaré group, and we use similar notations. However,
we emphasize that the rveal Loventz group appears heve
only as a mathematical analog, and all the quantities
involved are intrinsic. Moreover, in this paper, no
attempt is made to look for possible connections® be-
tween the internal and the external spaces. Confronta-
tion with known “no-go” theorems® is thereby avoided.

The proposed symmetry group is a group of trans-
formations acting in a special nine-dimensional space,
where it is somewhat surprising to find a thivd-ordey
metvic tensov g,,, whose mathematical properties
dominate the theory. These transformations include
a homogeneous part, built of eight rotations and eight
boosts generating a nonchiral SU(3)xSU(3) algebra,
as well as of nine translations which complete the
inhomogeneous part. The group contains three in-
variants: M3, M3C,,M3C,, where M? is the intrinsic
analog of the Lorentzian m?, and C,, C, are the SU(3)
Casimir operators whose values are determined in
some generalized intrinsic “rest frame.” The little
group in this frame turns out to be the usual SU(3),

_a property which forces us to relate it to the exact
symmetry limit mentioned before. Leaving this frame
by some boost introduces symmetry breaking similar

aWork in partial fulfillment of the requirements for the
D. Sc, degree.
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to a broken rotational symmetry, since the generators
of the little group are no longer pure rotations®; the
symmetyy breaking is thus of geomelrical ovigin

Physical difficulties connected with M3 +0 lead us to
assume that only representations belonging to the
M =0 case have particle interpretation. The dramatic
consequence of such an assumption is the spontaneous
appearance of the missing baryon number. This quan-
tity, which is undetermined within SU(3), is now defined
in a complete analogy to the ordinary helicity. That
is a component of the F spin along the hypermomentum
direction which satisfies B(3)=7 and B(3*)=~ 3. It is
an invariant only when M =0, and therefore it can be
used to characterize the representations only in this
case. The representations associated with M =0 are
not as familiar as the ordinarv ones because the algebra
generated by the little-group generators is no longer
semisimple. The limitations imposed on these repre-
sentations lead to the result that the quark model is
the only choice which does not prevent the population
of the physical known SU(3) multiplets. In Sec. IV the
existence of two entirely independent classes of repre-
sentations is shown, leading to two different types of
quarks. The quarks of the first kind are the conven-
tional ones, but those of the second kind, called pseudo-
quarks, possess new properties. Such objects are
characterized by only one diagonal (@) generator [an
unexpected property when the underlying symmetry is
SU(3)]; they are a d-s mixture® and can exist in two
different versions. These are leptonic-like properties
which are found in an SU{3)-based theory.

In Sec. V a model of quark interactions is introduced,
based on some fundamental mathematical properties
of the algebraic structure of the theory. We propose
a strong interaction model, built as local couplings of
covariant and contravariant independent quark currents,
which allow n quarks and i anliquavks of the first kind
to enlev an intevaction vertex only if n~in=0(mod3),
We further adopt the “classical” assumption that any
physical particle is a bound state of the interacting
quarks, and hence we get a mathematical mechanism
which explains why the low-lying states are of triality
zero. This model has general features of a dual quark

© 1978 American Institute of Physics 848



model because the current structure (quark creation
and annihilation) contains the element of quark-line
conservation,

At the end of this paper we discuss qualitatively pos-
sible mass operators from the proposed symmetry
point of view., We attempt to explain why such a quad-
ratic operators (m?) cannot be a hyper-Lorentz scalar,
which is cubic, and why in our opinion it can be some
zero component of a tensor. In such a way the mass
operator will be a rolational invariant only in the
“vest frame” (the exact symmetry limit), and any boost
will destroy this partial invariance.

Il. THE HYPER-POINCARE TRANSFORMATION

Let x* be a 9-vector and X its associated matrix
given by X =x*x, =VZ x°I+x -1, where A are Gell-
Mann’s matrices and [ is the identity. If the determin-
ant of X,

V2
detX :ZT S Xt xvxr (1)
is invariant under X — X' :AXAT, then we are left with
a 16-parameter transformation matrix A, such that
detA| =1, The coefficients g,,, form a symmetric
third-ovder metric tensor. It is given explicitly by

g()oo:l/\/—?” &0 =0,
gijo="— (1/2\[3)61‘;" gisz(l/‘[z)diw (2)
where &,

i5» Qs are the familiar SU(3) symmetric
structure constants, and the notation is

g,v,A=0,1, ..., 8,
i,j,k=1, ..., 8.
The normalization of this metric tensor is
8°%°80s= 0%, . (3)

The hyper-Lorentz transformation R is now defined
by x —x" =Rx, such that

gaBYR.O‘uR?vRTa:guvo' (4)

Among the various transformation families satisfying
(4), we are concerned only with those related to A.
One finds the connection R%, =3 Tr(x,A)A"), so that
A —~R(A) is a homomorphism of SL(3, C) onto this re-
stricted hyper-Lorentz group, These special R’s have
the expected “proper orthochronous Lorentzian”
properties: R3> 1 and detR=+1,

Next we consider the infinitesimal transformation
which is of the form: R =7+ w. As a consequence of
(4), w must obey the equation

guvaw.ak+guahw?‘v+gavlw?u:0’ (5)

and by the more interesting part

X0 3(e72B + 2B . coshA); VZ B . ginhA;
x'3|=| V% e® - sinhA; e® .coshA;
r8 (V2/3)(e® - coshA — e"28); V3 e® - sinhA;
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whose solution
w% =0,
wa:w?i:Jgﬁiy (6)

Wy =fi a0+ d; jaBrs

consists of 16 parameters grouped into two classes.
The a are identified as the known SU(3) rotation param-
eters, while the B are the added boost parameters.

The corresponding unitary operator U is of the form:

U(l+w)=I+iF* w* =I+ia -F+if-B. (M

Making use of the group property U(R,)U(R,)=U(R,R,),
one finds that the generators F, B of the group satisfy

[Fi’Fj]:_‘_l:fiijk)
[Fi;Bj]=+ifijlsz’ (8)
[BiaBj]:—Lfiijk'

Consequently our conclusion is that F indeed generate
rotations and B generate boosts. Moreover, by defining
a pair of new non-Hermitian generators A*=1/2(F +iB)
and checking their commutation relations, it can be
shown that the hyper-Lorentz group is of the nonchiral
SU(3)xSU(3) type.® In particular, a contravariant vector
A* transforms according to its (3, 3*) irreducible re-
presentation, while a covariant one A, transforms via
its (3*, 3) irreducible representation,

At this stage, we stress several important points:

(1) The invariant (1) requires x, =V3g,,x%*® to be
a covariant vector, and since x* and x, are linearly
independent, theve are no g¥,-like tensors possessing
the propevty of vaising and loweving indices.

(2) All the structure tensors: 5%, g,,,, g**, e4X
(for this generalized Levi-Civita tensor, see Appendix
A} have the property that N, - N,=0 (mod 3), where N,
and N, are the numbers of the up and down indices,
respectively.

(3) Any vector can be rotated to the form: A* =(A9;
00A®0000A®), i.e., we can always choose a preferred
plane, namely the (3, 8) plane, but not a preferred sin-
gle axis as is possible in the ordinary space case.
This property follows from the existence of two-dia-
gonal SU(3) generators,

(4) Let B,=A, B,=V3B be the two boost parameters
along the preferred plane direction, then R =expw is
given in its regular form by

x'4% =exp[(A - B)/2] - x*5;

/1,2 __ ,B,,1,2,
X =e x5

(9a)
x'®7=exp[ - (A +B)/2] . x8.7,
{(V2/3)(e® - coshA - ¢725) x°
v} e® - sinhA O oxt (9b)
3(2e728 + & . coshA) 8
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showing the 0—-3—8 mixing and other properties which
are discussed in Sec. VI. This matrix is our internal

analog to the famous “external” Lorentz transformation.

Next we define the inhomogeneous hyper-Lorentz,
or hyper-Poincar¢, transformation by: x —x’ =Rx + a.
Nine more translation generators P, are introduced,
with the following commutation rules:

[Pu’ Pu]: 07

U?BIPV]:-Z.ET;?:%PM
where the tensor f of generators is given explicitly
in Appendix A. These relations follow from the well-

known group property U(R,, a,) U(R,, a,) = U(R,R,,
R,a, + a,).

(10a)
(10b)

The principal Casimir operator of the entire group
is built in an analogous way to the Lorentzian m?, that
is
M3=V3g""P P P,, (11)

and for any M?® (M%>0, M®<0, M3=0) several separa-
ted and isolated branches exist, i.e., there isno R

to take us from one branch to another. Let us now
classify the possible branches, using the preferred
plane where P, = (E;00p0000¢).

A. The M3 > 0 {or M> < 0) case

There exist two distinguishable branches as demon-
strated in Fig. 1.

(1) Central branch—it exists only for E =M (or for
E <M for negative M?) and the intrinsic rest frame
[P, = (M; 0)] is contained in it. Any p, =M{R™)}, is a
member of this branch.

(2) Peripheral branch—this branch does not contain
the rest frame; it exists for any — < < E <+ « and hence
has no Lorentizian analog.

B. The M3 = 0 case

Here we shall discuss only the central branch which
splits into three separated subbranches, coming from
the M — £0 limit. As it is seen from Fig. 2 the M =0
dispersion surfaces are just the M®+0 asymptotic
planes.

(1) Null frame —where p, =0. This singular point is
located at the origin.

(2) Axial subbranch—here p, #0, but p* =V3g*“p p,
=0. This subbranch is found to be along the special
axes drawn in Fig. 2.

(3) General subbranch-~both p, and p* are different
from zero. These subbranch points are at the described
regions.

peripheral
branch

E<O
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axis 3 E axis1 axis?2

region 2

null frame

FIG. 2, The M=0 subbranches.

It should be emphasized again that if p belongs to
some subbranch, then Rp also belongs to it.

HI. THE GROUP INVARIANTS AND THE EXACT
SU(3) LIMIT

Let #(p) be a transformation which belongs to the
little group of p, i.e., »(p) p=p, and let I + w(p) be
such an infinitesimal transformation. It can be proved
that w(p) is of the form

o cHeas B
w(p), =€ P A° (12)
for any arbitrary #*; so the corresponding unitary
operator has the form
U(p) =1+ iF? €520 pnP =1+ if%p n®=1+iW,n*, (13)

where the W, the little-group generators, are given
explicitly by

WO:@F'P,
W, =VEFP +,

ijk

(14)

B,P,+d; ,F P,

ik
These W, satisfy the familiar (10b) commutation re-

lations:
[f?g, le]:_ieﬁ:ytfé W5' (15)

Now we are able to construct the invariants of the

entire group by using the M® 20 “rest” values:
p.(rest) = (M;0), W,(rest)=vZ M(0;F), (16)

The invariants are
1,=V3g*”P PP, =M?
I,=~3V3gh W, W, P, = C,M?, (17)
1,=3V3g" W, W, W, =CM?,

and I, =g*"*W, PP, =0 which is an identity. The two
coefficients C,, C, are the Casimir operators of SU(3).

FIG. 1. The M?>0 different
branches.
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From (16) it is clear that the little group associated
with the intrinsic rest frame is an SU{3) group, whose
representations determine the hypen-Poincaré invari-
ants (17), although we are dealing with a more compli-
cated group. Two quantities are thus needed to label any
given state: M3—yet without any physical interpretation,
and the F spin in the generalized rest frame (16) which
we identify as the original SU(3) spin. The internal
SU(3) symmetry breaking is obtained by leaving this
special frame, through some boost, because the W,
are no longer pure rotations [there is a boost penetra-
tion into its structure, as follows from (14)]. There-
fore we assume that the hyper-Loventz vest frame is
the frame wheve SU(3) is an exact symmetry. If mass
degeneracy at this limit is the result of a hypothetical
switching off of SU(3)-breaking interactions, then any
physical hadron must “move” relative to our rest
frame, with some principal boost parameters A, B
[(9)] along same plane direction chosen to be the pre-
ferred one. Such a situation implies, beside an SU(3)
breaking, a possible mixing of representations [e.g.,
the structure of R implies a mixing between the singlet
and the octet representations of SU(3)], while the param-
eters A, B must be somehow related to the coupling
constants of the interactions mentioned (a more de~
tailed discussion is brought in Sec. VI).

From what has been said so far one may expect that
the M3z 0 central branch contains a possible particle
interpretation, but there are several strong arguments
against such a possibility:

(1) The nonvanishing of M® makes it the dominant
quantum number of the theory. Such a quantity can take
any continuous value, therefore we cannot think of any
candidate for such an intrinsic quantum number.

(2) The rest frame, as a member of the M2 0 cen-
tral branch, makes equal-mass multiplets possible,
However such multiplets have not been found.

(3) Another difficulty connected with the rest frame
is its isotropy, which yields no preferred quantization
plane. Such a plane is necessary in order to prevent
states, built as linear combinations of different charges,
from appearing.

(4) Since M® and F complete the states classification,
no room is left for a baryon number definition; thus
something is still missing in the theory.

These problems can be avoided by the simple as-
sumption that physical particles have M =0, The rest
frame problems disappear because the null frame can-
not be reached as explained, and the baryon number
appears quite spontaneously and finds its natural place
in the scheme, as explained below.

IV. THE BARYON NUMBER AND THE GENERALIZED
QUARK MODEL

In the M =0 case, the three invariants (17) are not
sufficient to characterize the representation (I, and /,
vanish as well as their SU(3) content]. However, in
this case, instead of those invariants, a new quantum
number can be defined in analogy to the Lorentzian
helicity. We identify this quantum number as the bary-
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on number, and it is used to label the M =0 represen-
tations. First we shall study the representations of the
proper little group by finding the representations of

the Lie algebra of its generators, because the different
states furnish these representations. Neglecting the
null-frame case, there are two types of finite represen-
tations for the two left separated subbranches, re-
spectively.

A. The general subbranch and its related quarks
In the preferred plane p, can have one of the three

forms which are indicated in Fig. 2:

(= (1/v2)g - V3 p; 00p0000g), X< -1,
(- (1/¥2)q +VIp; 00p00004),

{(V2¢q ; 00p0000¢) ,

bp= x>1, (18)

—-1<y<1,

where x is defined by x=p/V3¢g. For demonstration
purposes we shall use here the third form, but the
same can be done with the two other forms as well.
The little-group generators are then given by (see
Appendix B):

Jy=( - x®)VHF +xB,), L,=(1+x)V¥F,+B,),
J,=(1~x¥)V4F, -xB,), L. (1+x)1/2(F -B)),
J,=F,, Le=(1-x)V2(F +B.),
(

J.=F, L,=(1-x%(F,-B,). (19)

By examining the commutation relations one finds

the existence of four translations (L) which form an
invariant Abelian subalgebra, and four rotations (J)
out of which two are diagonal; so the total algebra
generated is not semisimple. In order that the states
will form a finite set, it is necessary to represent the
translations by zero, and to allow only SU(3) singlets.
Taking these requirements into account (Appendix C),
it then follows from the explicit form (B2) of the W,
that the two vectors P, and W, are proportional,

W, ==-2P,. (20)

The proportion coefficient A is the new invariant men-
tioned before, and it is given explicitly by

s PF,+ qF
1 bolb,q) ’
where the various py(p, q) are given by (18). A deeper
inspection (Appendix C) shows that for any given X we
can use only the [(a,0);(0,5)], [(0,b):;(a,0)] hyper-
Lorentz representations when p,, p* are at the general
sub-branch respectively. For both

(a_b)y

W
L
A=—pt = (21)

A=1%. (22)

which is the generalized Weinberg theorem. ' By con-
sidering the simplest representations (a=0 or » =0) we
can summarize:

(1) A uniquely determines the SU(3) representation.
(2) Only triangular representations are allowed.

(3) The possible populated states are located only
at the representation vertices.

(4) Any allowed state is related to only one form of
b, [the invariant X must be independent of x in (21)],
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These limitations® prevent the direct population of the
physical known SU(3) multiplets. The 3 and 3* repre-
sentations are the only permitted representations that
are possibly fully populated; thus the quark model pro-
vides the only consistent picture. The quarks (anti-
quarks) are then described as members of the 3(3*)
representation of SU(3), belonging to the M =0 general

subbranch. Furthermore, note that
M3)=+13; M3%) =-73, (23)

so there is almost no other possibility but to get the

desired connection
B=2x, (24)

which highly suggests that the baryon number B is es-
sentially a component of the F spin along the hyper
momentum direction.

B. The axial subbranch and its pseudoquarks

In our opinion, this case can contain a possible ori-
gin of the hadronic weak interaction because of the

strange algebra generated by the little-group generators.

To begin with, we write the three possible p, in the
preferred plane, following Fig., 2. They involve only
a single parameter (and not two, as in the previous
case)

(V3g ; 00V340000g), x=+1

b.={(/2¢; 00~v3q0000q), x=-1 (25)

(—leq; 0000000g4), x=0.
The little-group effective!? generators ave only five
now, and not eight! (it follows from the structure of

the W, shown in Appendix B). They include four trans-
lations and only one rotation which is also diagonal.
For example, using the first form of p,, the generators
are

L,=F,+B,, L,=F,-B,,
L,=F,-B, Q=F,+(1/V3)F,.

L,=F,+B,,
(26)

By making use of previous arguments we can show that
(20) and (24) still hold, while the representations are
different now. A given X is connected only with those
[(a,, b,);(a;, b,)] representations satisfying the relations
Ha, +2b,) - 5(2a, + b,) =X or - §(2a, +b,) + 3(a, + 2b,) =1
depending on whether p, or p* are at the axial sub-
branch, respectively (see Appendix C). For the simplest
representations (a,, b, =0 or a,, b,=0) we obtain the
following properties:

(1) Except for the trivial cases A =0, 3, A does
not determine the SU(3) representations in a unique
way [e.g., (1;1) and (0;3) are both A=1 cases]!

{2) The possible occupied states are located at the
representation periphery.

(3) These states are SU(2) degenerated, a property
which results from the three vanishing rotation gene-
rators,

Consider, for example, the three possible states
for x=3% (or B=3):
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(211

’

|cosé, - d+ sind, - s ) for A=-F,—3¥=

|cos6, + s +sind, -u) for x\=F, -ty =14, (27)

|cose3-u+sin93-d)f0r A=+Y=1%,

where the angles 8 are yet undetermined and can take
any continuous value. Among these three possibilities
only the first one seems to have particle interpretation,
because the two others have no defined @, while in
nature all known particles have definite charges. Let
us list some of the so-called pseudoquark [the first
state in (27)] properties:

(1) Only one diagonal SU(3) generator {(namely @)
characterizes it; therefore it transforms like a one-
dimensional representation.

(2) The pseudoquark state is a d-s mixture.

(3) There exist two different pseduoquarks: one,
which is described by p, and has g“"*p,p, =0, and the
other described by p* and satisfies g,,,p"p*=0.

These propevties ave clearly leptonic ones; so we
might expect the pseudoquarks to be associated with
weak interactions. One can even speculate that these
objects have something to do with the structure of the
leptons. The possible existence of a single pseudo-
quark out of three allowed ones reminds us of the
neutrino on the SU(2) level., This m?®=0 particle occurs
in only one helicity state; thus the hyper-Lorentz
pseudogquark is our analog of the neutrino.

V. A NAIVE MODEL OF QUARK INTERACTIONS

The model proposed here is a qualitative one, al-
though it has some important basic properties. The
strong interaction of quarks is described by an “effec-
tive Lagrangian” which is a hyper-Lorentz scalar.
This scalar is built from quark currents, in analogy
to the well known effective Lagrangian of the weak
interaction, but yet no space—time meaning is given
to the quantities involved.

The model is based on two mathematical properties
that were first presented in Sec. II:

(1) The raising and lowering indices operations are
absent.

(2) The metric tensor is a third order one, with its
indices either all up or all down,

The first property implies two different currents: J,
and J*. These currents are written as

Juza(Fu_,....)w’ uzg(Fu*'"')’b, (28)

where the creation and annihilation operators are re-
lated to quark (y) and antiquark (¢) fields, and where
F¥=[(1/V6)I; F?] F, =[-(1/V6)I; F**]. The second
property allows us to form interactions of different
types that contain N contravariant currents and N co-
variant ones, such that N-N=0 (mod 3). In the lowest
order, three basic interactions are possible; only one
of which reminds us of the Fermi interaction:

Surdud*, foGund“ T f30g" d 0, (29)

where fy, f5, f5 are coupling constants. They corre-
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FIG. 3. Diagrams for the quark reaction a+5—c+d,

spond, respectively, to situations where a quark—anti-
quark pair, three quarks and three antiquarks entering
and coming out of the interaction vertex.

The main points of this model are the following ones:

(1) The current structure and the F-spin conserva-
tion at the interaction vertex make it possible to graph-
ically describe the interaction by confinuous quark
lines that enter duality diagrams. The simplest ex-
ample, drawn in Fig. 3, describes the quarks reac-
tion a+b —~ ¢ +d, which is of the J_ J* type. The SU(3)
quantum numbers of a and ¢ (and therefore b and d) or
of a, b (and c, d) must be the same, although they may
differ in their hypermomentum p. The third possibility
a=d, b=c is forbidden because a quark creation and
an antiquark annihilation do not form a current (3 %3
does not contain 1, 8). This property may turn out to
be connected to the drawing rules of duality diagrams.

(2) n quarks and 7 antiquarks can interact together
only if n — #=0(mod3). If we assume that any real

particle is just a bound state of these interacting quarks,

then this model is a mathematical mechanism which
explains the low-lying triality zero ({=0) states and
prevent other [ +0 quark combinations from appearing,

Still exotic states do exist (e.g., via the g, g*%J*J,J"J,

interaction, etc.); thus one must postulate that the
interaction among quarks is done only according to the
three simple possibilities (29) if he wants to get rid

of those unpopular states. This assumption is consis-
tent with the fact that only B=0, +1 elementary par-
ticles appear in nature.

(3) The existence of bound states can be explained
by assuming large coupling constants (f,, f5,f5). In
such a way, high-order processes will dominate the
low-order ones, and quarks leaving some vertex must
interact again and again infinite numbers of times.
This idea is illustrated in Fig. 4, where we made use
of the Zweig rule (a), which can be formulated here
as follows: a quark line does not intevact with itself
{the violation of the rule is shown in (b}]. Perhaps
this rule is hidden somewhere in the model (it may be
connected with current contractions) but unfortunately
we have not been able to find it,

(4) Our naive model says nothing about the existence
or nonexistence of free quarks, but it can be easily
generalized to contain the concept of gluons. It is
possible to introduce them into the model by giving up
the locality of the interaction in the nine-dimensional
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FIG. 4. (a) The fundamental bound states. (b) The Zweig rule
violation,

space. J*J, ~J*G4J, and g, ,J I Ir—~ G, ,J*J"T*, where
G are some “gluon internal propagators” reminding us
of the weak interaction W boson propagator.

VI. THE MASS OPERATOR AND THE PROPOSED
SYMMETRY

From the Lorentzian point of view, the mass opera-
tor is a quadratic scalar independent of the particle
spin, On the other hand, any typical hyper-Lorentz
scalar [e.g., (17)] has a cubic structure (unlike the
quadratic scalars of SU(3)). This difference in dimen-
sions between scalars of the two families is, in our
opinion, the reason why the mass operator cannot be
an invariant under both the Lorentz and the hyper-
Lorentz transformations. We therefore assume that
the mass operator is a Lorentz scalar whose values
are determined by intrinsic hyper-Lorentz properties.
Below we discuss qualitatively such possible opera-
tors.

In the exact symmetry limit one expects mass de-
generacy within a given SU(3) multiplet; in our language
it is to say that the mass operalor is a rolational in-
varian! only in the intvinsic vesl frame. The boost
transformation which takes us out of this frame is
shown explicitly in (9). It consists of two parameters
A, B which represent an internal motion along the
3, 8 directions, respectively. Nonets (but not octets
and singlets separately) are naturally related to this
9 %9 transformation, One can easily notice three basic
properties of (9) which are able to connect it with
masses of a nonet members.

(1) The transformation obeys the so-called R sym-
metry, i.e., polar nonet states are multiplied by the
same coefficients.

(2) The choice A =0 implies the appearance of an
exact SU(3), symmetry.

(3) There is a 0—~3—8 mixing, which converges to
a 0—8 one in the A =0 limit., Besides showing a pos-
sible origin to mass formulas for nonets, these prop-
erties suggest the idenfification of A as an electromag-
nelic pavamelev and of B as a medium-stvong one.

The mass operator must be kept as a rotational in-
variant as long as we stay in the intrinsic rest frame.
This property suggests to construct it as some zero
component of a hyper-Lorentz tensor of operators. In
such a way it will be proportional to the identity only
in the exact symmetry limit, but any given boost will
contribute some SU(3) symmetry-breaking terms.
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Consider, for example, a m +#n order tensor

M, 0™ whose i, v=0 component is assumed to be the
“bare” mass operator (and therefore proportional to I).
By applying a hyper-Lorentz transformation to this
quantity, we obtain the “renormalized” mass operator
me,

2 pr0ee0' _ o
M =My g =R?

e ~R?um(R'1)f'é .. -(R“)','g (30)

L

g v

expressed by the original M terms. There is no need
for the proposed mass operator {(30) to be a universal
operator. The number of its indices and their location
can as well express the quark content of the particles
considered. For example,

#M? (mesons) EM?; ,
m? (baryons) =M | (31)

m? (antibaryons)=M/,.

Since we can choose the boost to be along the preferred
plane (3, 8 plane) direction, R takes the form (9) and
the u, v indices in (30) are only 0, 3, 8, Physically it
means that m? receives pure and mixed electromag-
netic and medium-strong contributions.

Finally we remark that the concept of charm does
not appear in this paper because our proposed sym-
metry is based on SU(3). However, a similar generali-
zation can be applied to SU(4). This idea will be con-
sidered in a future paper.
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APPENDIX A: THE GENERALIZED LEVI-CIVITA
TENSOR

The generalized Levi-Civita tensor is given expli-
citly by
¢ (one or more indices are 0)=0,
-‘_‘-‘_._i- __'-k._ Z
O =l =€l =€ =V,

0

(A1)
€5 = 1ot + il onr s
and it has the following properties:

(217 TR0 S [T S
g E'v'c‘gauhe'u-o’_o’

s ey — 165" (A2)
cary <Bev ‘v

He — vep __ uey
€ogop = =€egep = =€opog s

Y ___ .
(er ) =€} |

We use this tensor in order to build the tensor f*,
=4, 2F%, of generators (10b), and one finds

f‘?o‘:o,

f?izﬂo:‘/—%_Fi ’
Fli=FinBe+ dijak s -

(A3)
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APPENDIX B: THE LITTLE-GROUP GENERATORS

In the preferred plane, where p, =(E;00p0000q),
W, are given explicitly by

W,=VE(pF,+ qF,), (B1)

W, ,=[VZE +(1/V3)qIF, ,+1B, ,,
W,=[VZE + (1/V3)q]F, + (1/V3)pF,,

W, s =[VZE + 4p - (1/2V3)q]F, , + (3p + (V3/2)q]B, ,,
We=[VZE = 3p = (1/2¥3)q]F, , +[-3p + (V3/2)q]B,
W, =[VZE - (1/V3)q]F, + (1/V3)pF,.

At the M =0 general subbranch, where p, =(v2g;
00p00004q), W, become somewhat simpler

W, =VE(pF,+qF ) =V2W,,
Wl,zz\/ﬁ‘qFLz £ sz,u

W, =V3gF,+ (1/V3)pF,, (B2)

W, . =[(V3/2)q - $p)(F, s+ B, ),

W, =[(V3/2)g - 3p)F; . £B. ),

and the simplest form of W, is obtained at the M =0
axial subbranch where p, = ¢(v2;00V300001);

W,=V2¢Q=V3iW,=v2W,,
W, ,=V3¢(F, ,£B,,

W, o=V3q(F, ;£ Bs,q),
W, ,=0.

(B3)

APPENDIX C: THE GENERALIZED WEINBERG
THEOREMS

Using the operators A*=4(F + iB) we have shown in
Sec. II that the hyper-Lorentz group is of the nonchiral
SU(3)xSU(3) type. Let us now express the little-group
generators in terms of those non-Hermitian generators
A", first at the general subbranch (19), and then at the
axial one (26). By using

F=A+A", B=-i(A"-A")
one gets at the general subbranch:

Iy =1 =X VRA] ,Fixd; )+ (A, 2 ixA; )],
Ja,q :A;,S +A3—,a s

L, =1+ x)2((A s¥1AL )+ (A5 AL )], (c1)
Lo, =(1-x)Y2[A; ,FiA; ) +(A; ,+iA )]
Next we define T*, V*, U* as the SU(2) generators of
A%, The limitations which follow from the requirement

of having a finite set of states, mentioned in Sec. IV,
are
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TLVLUL|A) =0, (C2)
T, V., U ix)=0, (C3)
(T; +T)|r)=0, (C4)
(Y + Y| a)==2x|x). (C5)

Therefore, if we consider an {(a,, b,); (a,, b,)] hyper-
Lorentz representation, then
(C2)=>b,=0, (C3)=>a,=0, (C5)=>3a,—-3b,=A.
(C6)

These relations are just the generalized Weinberg
theorem and the general subbranch properties dis-
cussed in Sec. IV,

At the axial subbranch the situation is simplified,
and after some substitutions similar to (C1) one gets
the following restrictions:

T:, Vi |a)=0, (€N
T;, ;) =0, (c8)
@ +Q) Wy ==x[r). (C9)

(C9) is again the proper Weinberg theorem, and (C7),
(C8) give some other representation properties; but
the more important point here is the SU(2), degeneracy
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following from the survival of only five little-group
generators in this case.

tp, Tarjanne and V. Teplitz, Phys. Rev. Lett. 11, 447
(1963),

!B, J. Bjorken and S. L. Glashow, Phys, Lett. 11, 255 (1964),
F, Gursey and L,A, Radicati, Phys. Rev, Lett, 13, 173
(1964),

A Lie algebra containing both the Poincaré and SU(6) algebras
as subalgebras was introduced by S. A, Basri and L, P.
Horwitz, Phys, Rev, D11, 572 (1975).

L. O’Raiffeartaigh, Phys. Rev. 164, 2000 (1967).

0n the SU(2) level one is familiar with W=P J—-pxK, where
J, K are the Lorentz group generators.

TAnother geometrical treatment of the SU(3) breaking was
given by L., Michel, Symmetry principles at high enevgy,
The Fifth Coral Gables Conference (Benjamin, New York,
1968), p. 19.

8As proposed by M. Gell-Mann and M, Levy, Nuovo Cimento
16, 705 (1960),

For the “‘external” analog see, for example, S, Weinberg,
Phys. Rev, 133, 1318 (1964),

I%where we are always able to choose any preferred axis as our
Z axis.

U3, Weinberg, Phys. Rev. 134, 882 (1964), This theorem
proves that for m%=0 and a given helicity A only the (4; B)
representations of the Lorentz group, with A=—A4+B, are
available,

Y2There exist 11 degrees of freedom in this case, only five of
which are connected with the W,. The other six generators
are irrelevant since they act on definite zeroes of the p .
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Relativistic spherical stars reformulated
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The problem of finding static, spherically symmetric, solutions of Einstein’s equations for a perfect fluid is
reformulated. A field equation connecting the pressure and density and free of metric components is
obtained. Upon finding a solution of this field equation, the metric components are then obtained by
quadrature. A solution-generating technique is developed which yields physically valid pressure-density
configurations for adiabatically stable stars. Analytic solutions are obtained for the pressure, density, and

metric components.

1. INTRODUCTION

There are two traditional approaches to finding the
configurations of static spherical stars. The Oppen-
heimer—Volkoff method! consists of simultaneous nu-
merical integration of the Einstein field equations for
pressure and mass. An explicit equation of state is
assumed, and the integration starts at the center of the
star with a prescribed central pressure. The integra-
tions are iterated until the pressure decreases to zero,
indicating the surface of the star has been reached.

Analytic configurations can be obtained by Tolman’s
method, ? wherein one of the two metric components
is chosen as some explicit function of the radial coor-
dinate and one of the Einstein field equations is then
integrated to find the other metric component. Both
components are then substituted into the remaining
field equations to obtain the pressure and density. As
might be expected with Tolman’s method, unphysical
pressure-density configurations are found more fre-
quently than physical ones. Other efforts®~® at solution
generating are similar to Tolman’s approach.

In this work we take the viewpoint that the interior
Schwarzschild geometry is of secondary interest, and
that pressure and density are the primary quantities.
If a physically valid pressure-density configuration can
be found, then one is interested in knowing the metric.
While the Oppenheimer—Volkoff method is perfectly
adequate for obtaining numerical models, there re-
mains some additional understanding to be gained from
exact analytic solutions. To this end, the problem has
been reformulated® so that one can first find a valid
physical configuration and then obtain the metric.

The paper is organized as follows: In Sec. 2 the
metric and field equations are given in isotropic co-
ordinates. New metric components are defined in Sec.
3, which cast one of the field equations into a form
symmetric in the new metric components. The question
of how the physical configurations differ under inter-
change of the metric components motivates the defini-
tions of the next section. In Sec. 4, two dimensionless
quantities, e and f, are defined solely in terms of the
pressure and density. From the field equations, a dif-
ferential equation relating ¢ and f, and free of metric
components, is obtained. It is then shown that the met-

Ugupported in part by a National Research Council of Canada
grant,
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ric components can be obtained by quadrature from e
and f. In Sec, 5 the Newtonian limit of the e—f equation
is obtained and shown to agree with the appropriate
Newtonian equation for spherical equilibrium. Since the
e—f equation is nonlinear and difficult to solve, a solu-
tion-generating technique is formulated in Sec, 6. Con-
ditions are given for physically valid pressure-density
configurations, and an algorithm is then given for gen-
erating physically valid solutions. An example is given,
and a formula is presented for the total mass.

2. FIELD EQUATIONS

We consider a static spherically symmetric space-
time with a perfect fluid source. The metric is written
in isotropic coordinates:

ds® =A* di® — BYdp® + p*(d6" + sin®8 do*)), (1)
where A =A(p), B=B(p). The Einstein equations for
a perfect fluid are

Ry, =38, R==8u[(1L+pluyre, - pgu,], (2)
where #* =A-18} is the unit tangent to the matter flow

and lies along the timelike Killing vector &; . Isotropy
of the pressure and the field equations yield

A"/A+B“/B=(A"/A+ B'/B){p™ +2B'/B), (3)

where primes denote derivatives with respect to p.
The pressure p and mass—energy density u are given
by

8np =B2(2(A’/A +B'/B)(p™ + B'/B) - (B'/B)}*],  (4)

§mu=B*[(B'/B)* - 4p™(B'/B) ~ 2(B"/B)\. (5)
The equations of motion yield the Euler equation
p'/(u+p)==A"/A. (6)

Equation (6) is determined by the field equations (3),
(4), and (5), and cannot be counted as a separate field
equation.

The system of equations (3), (4), and (5) is completed
by choosing any one of the unknowns A, B, p, or { as
a function of p or by specifying an equation of state

p=pih
3. SYMMETRIC FIELD VARIABLES

To find an equation relating p and ¢ without metric
variables we proceed by stages, first introducing new

© 1978 American Institute of Physics 856



metric components:
E/D:=A, D*:=B. (7
The field equations are rewritten as
D"/D+E"/E~¢6(D'/D)E'/E) - p~(D'/D + E'/E) =0,
(8)

gnp =2D*[2(D’'/D)(E'/E) + p"}(D' /D + E'/E)], (9)
8Tl = - 4D(D" +20™'D"), (10)
p/(u+py=D"/D-E'/E. (11)

Note that field equation (8) is invariant under
p~(ap®+p)/?

for constants @ and 3. Equation (8) is also bilinear in
D and E and invariant under £~ D, D~ E, Since p and
i+ change under D==E, we are led to the question of
whether both solutions (E, D) and (D, E) can correspond
to valid physical configurations and hence are led to the
new variables in the following section,

4. PRESSURE AND DENSITY AS PRIMARY
VARIABLES

It is convenient to define two dimensionless variables
which depend only on the pressure and density:

e:=pp'/(L+p), (12)
fi=p/(1+3p).

From Eq. (11), it follows that
e=p(D'/D~ E'/E), (13)

Equations (8), (9), and (10) yield

_2(D'/D)E'/E)+p-{D'/D + E'/E)
f”‘ E”/E—D”/D— 2p'1(D'/D—;—"/E)'

(14)

The new variables e and f should be negative and posi-
tive, respectively, for a valid physical configuration
(see Sec. 6). Under D=E, it follows from (13) and (14)
that €~ ~e, f——f. Thus, if a (D, E) solution corre-
sponds to a valid physical configuration, then the solu-
tion D==E must correspond to an unphysical one.

It is now possible to obtain a single differential equa~
tion relating ¢ and f and free of metric variables. In-
troducing the dimensionless variable #,

w:=p(D'/D+E'/E), (15)
and using {13), the field equation (8) becomes

pu' = 2u—u +264 =0. (16)
The physical variable f is now given by

f={e* = 2u—-u")/2(e + eu+pe'). (17)
Solving Eq. (17) for u yields

u==(1+ef) +[1+ (1 +5%) - 2pfe' 72, (18)
where it will be shown (in the Newtonian limit) that the

positive square root is required. Substituting Eq. (18)
into field equation (16) yields the desired pressure-
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density relation:
[1+ 21 +7Y) - 207’ % (oef’ - pe'f+ 262 - &)
=peff - pe’(pf +eft+f-e)-pe’f
+2ef + 231 + 1Y), (19)

Once a solution of Eq. (19) is found the metric is ob-
tained by quadrature’:

A'/A=—ple, (20)
B'/B=pYe(l-f-1+[1+21+7%=20fe' 1%, (21
which follows from Eqgs. (6), (13), (15), (18) and defini-

tion (7). The pressure and density are recovered from
definition (12):
p=expl [ plelr™ - 2)dp),
p=p(ft-3).
A straightforward physical approach to spherical
stars can now consist of specifying an equation of state
p=p(K), and then, by solving Eq. (19), a third order

nonlinear differential equation, for u(p). The metric
is then determined from Egs. (20) and (21).

(22)

5. THE NEWTONIAN LIMIT
With the speed of light appearing explicitly,
e=pp'/(uct +p),
f=p/(uct + 3p).
Dividing by 2, Eq. (19) can be rewritten as
[1+ 621+ 7% = 20fe’1'¥[26% - (e/1)? = ple/f)']
=2(e/Al1+ (1 +1Y)] - p’r(re’) = pefle/p)’
+ple’/Nle/f-1).
In the limit ¢ -, one obtains
P " /D) + 30" /D) /1) = 3¢ /) /1)
+@' P/ )]+ P4 /) 1 /1)
+2/P)p"/p - 20" /p)]=0. (23)

The Newtonian equations for spherical equilibrium
are

%: 7TU-’VZ,

(24)
dp Gm
- AH

Eliminating the mass yields
wH—p” +p" (0’ /1) = 2p" /7] = 47G.

Differentiating once more and then multiplying by
7*u?/p provides the Newtonian equation with which Eq.
(23) agrees {p— 7 in the Newtonian limit), The Newton-
ian limit shows that the positive square root was re-
quired in Eq, (18).

6. SOLUTION GENERATING

Since Eq. (19) is manifestly difficult to solve, we
develop a solution-generating technique which yields
physically valid pressure-density configurations. Let
#(p) in Eq. (16) be chosen as a solution-generating func-
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tion; then
2et =2u+ut - pu’,
f=(t = 2u—u)/2(e+eu+pe'). (25)

The boundary of the star p, is given by p(p,) =0,
and the following conditions must hold for a physically
valid configuration®:

(i) ¢ and p must be finite and positive for 0 <p < p,;
(i1) ¢ and p must decrease outward;

(iii) p < u for 0<p<py;

(iv) 0<dp/du <1 for 0<p<p,.

The physical constraints imply that

0<fl, (26)

since ¢ must be negative for p to decrease outward
and p < i implies that f<j directly from the definition
of f, and in addition f must be positive. The condition
that the speed of sound be less than the speed of light
implies, using definition (12),

of' > e(1-2A(1 - 4). 27

The functional form of u is severely restricted by
the condition that p and g be finite at the origin. From
Eq. (25), f can be rewritten as

e<0,

f==e(3u® + 2u+ pu')/ (2u® + 6u® + 4w — phu = pu’).
The pressure is given by

8rp = p2D*pu' + ) =p2 Dl + 2u - &)
upon substituting Egs. (13), (15), and (16) into (9). As-
suming D to be finite and nonzero at the origin, it then

follows that the only functional forms for « and ¢ con-
sistent with p and f finite and nonzero at p=0 are

u=0{p", e=0(p?) as p—0.
Furthermore, since u(u +2)= 0 follows from the pres-
sure equation, u=0(p?) as p—~ 0 implies that « >0,

Equation (25) shows that ¢ = 0(p*) as p~0 if and only
if u is chosen such that = 0[p*(ag® +8)] as p—~ 0 for
constants o, 3, and #> 2 (when k=2, « and 8 must be
chosen such that 8% - 24 #0). Choosing u positive with
a finite first maximum to the right of p =0 guarantees
that p~2(pu’ + €°) (and hence the pressure) is positive
and finite for 0< p < p, since p, is given by pu’ + e* =0.

In order to satisfy constraints (26) and (27) at p=0,
« must have the form u =0[p%(g - ag®p® + 1bg°pY) ] as
p—0 for nonzero constants «, b, and ¢.

a>23/9 (28a)
guarantees 0 < f{0} <1, and if a and b satisfy
250 + 106(12 + 17a) — (18 + 78a + 1974* + 1624°%) > 0,
(28b)
then 0 <dp/diL=1 at p=0.
The following algorithm generates physically valid
configurations:

{a) Choose u such that u =0[p*(q - s ag’p® + 1bg°p")]
as p—~0and u= 0, with a finite first maximum to the
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right of p=0, and with a and b satisfying constraint
(28);

(b) calculate ¢® from Eq. (25);

(c) find p, from the equation pu’+ €* =0, Demanding
Py positive may fix some parameter in u;

{d) choose e =- (e},
(e) calculate f from Eq. (25).

(f) obtain p, ¢ and the metric components from Egs.
(20}, (21), and (22).

Example: The scale freedom of Eq. (25) is used to
define the variable x : =p/@ with o > 0. Choose «
=2¢*(1 = x%)/F where F(v): =82+ 0) ~ (826 + 1)x? + x*,
with 3, 6 constant. Constraint (28) requires

8% ~16/9,

(58%6 - 7)* ~ (18B)°.

e==23x"/F.

=1+451-(1+46)'?], requiring 5 ~4.

B[2+05-(3+28)x" + 51
32 o) + (1 - T -

p/pe=8%2+06-(3+26)x* + 6x*|F Y (H/H,) Bloat-1) /7
1/ 1y =[8/3(6 = VITF-(H/Hy) &*0-0 77,

5

where L,=3py(3 - 1), zero subscripts denote evaluation
at x =0,
2x° - (3°5+1+7)

HO =g a5y 1o 7

J() =33 - 1)(2+6) + (1 + 668 + 9B - 326)x*
—3(1+B0)x,
v ={(8% ~ 1)* - 88° /2.
The metric components are
A=const. H*",
B=const, F/tp-8tes-D /o

Schwarzschild’s constant density solution is given for
the parameter value 6 =872 ~ SB", which lies outside the
range of constraint (28).

Finally, upon matching a solution to the exterior
Schwarzschild metric and using B’/ B= (¢ + u)/p, the
total mass is given by

M=2p,e;[1-(1+eH)/2, (29)

7. REMARKS

In the new formulation of the spherical equilibrium
problem, one starts with an equation of state and then
solves the e—f Eq. (19). This is equivalent to the
Newtonian case of starting, for instance, with a poly-
tropic equation of state and then solving the Lane—
Emden equation. Upon finding an ¢—-f solution, the
metric is obtained by quadrature.

In the post-Newtonian approximation, distributions of
matter in spherically symmetric hydrostatic equilibrium
are governed by the pressure-density equations which
arise as coefficients upon expanding the ¢—f equation
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in powers of c2.

Regarding the Weyl tensor, none of the physically
valid solutions considered in this work can be con-
formally flat, since Collinson® has shown the unique
conformally flat static Schwarzschild interior to be
Schwarzschild’s constant density solution.

Adiabatically stable solutions in closed form are
provided by the solution generating technique.
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The quantum-mechanical, fermion, attractive delta function gas in one dimension has many interesting,
known physical properties, including some aspects of soliton behavior. Motivated by a desire to test the
validity of the HF approximation to many-body systems, we have made a rigorous study of the HF theory
of this gas. When the particle number is even we can show that although HF theory does not give
energies accurately, it does correctly predict the known qualitative properties; in particular, only two-

particle bound states exist.

I. INTRODUCTION

The Hamiltonian for N particles in one dimension in-
teracting via a delta function potential is

N N
H==), A; - 2c27 5(x; = x;),

i=t i<j

(1.1)

2

V.=
i 3x,

, A=V (1.2)
Its ground state has several interesting properties and
our main purpose will be to investigate the Hartree—
Fock (HF) theory of this system for fermions to see
whether the qualitative features of the exact ground
state hold in HF theory. Our motivation is that while HF
theory can be shown to exist in many cases, in the
sense that the HF equations do have solutions which
minimize the HF energy, very little is known rigorous-
ly about these solutions, even in the simplest cases.

An example is the recent proof! that HF theory exists
for atomic and molecular systems, but even for the two-
electron one-nucleus problem with Z <2 it is not obvious
what the HF ground state is. Because the HF equations
are highly nonlinear, attempts to solve them on a com-
puter are not insensitive to ones unproved preconcep-
tions about the nature of the solution., Therefore, it may
be of some academic interest to note that we can prove
rigorously that for the attractive case (¢ > 0), the HF
approximation to (1.1) is correct in several qualitative
respects. The HF energy itself is not very accurate; in
fact it is wrong by a factor of 3 in the ¢ — « limit, The
repulsive case is more complicated and we shall have
little to say about it, apart from some generalities. In
fact there is reason to believe that HF theory is not as
good in the repulsive case; e.g., it possibly contradicts
(D) below.

By fermions we mean spin-3 particles obeying the
Pauli exclusion principle. The allowed wavefunctions
D(Xyy oo, X33 0150e.,0y), X; €R, 0=z, are antisym-
metric in every pair (x;,0;) and (x;, 0;). The ground
state energy is

DWork partially supported by U.S. National Science Founda-
tion Grant MCS 75-21684-A01 and CONACYT (Mexico),

860 J. Math. Phys. 19{(4), April 1978

0022-2488/78/1904-0860$1.00

Ey(N) = inf(y, HY)/ @, ), <= LA (1.3)

We call this the free case. If the particles are in a box,
0<=x; <L, we shall denote the energy, defined as in
(1.3), by E,(N,L) or E,(N, L) if periodic or Dirichlet
(¥ =0) boundary conditions are imposed.

Some of the properties of the ground state are:
(A) Saturation: If ¢ = 0, then
EWN, «)= - c'™N/4, (1.4)

in the Dirichlet or free cases. If ¢ <0, then E(N, -) >0
in all three cases.

(B) Thevmodynamic limit: For any ¢

lim N E (V) = e(0) (1.5)
N-=
exists;
lim NYE(N,N/p)=1lim N'E ,(N,N/p)
N—~ o N- o
=e(p), (1.6)

exists for all densities p> 0. Moreover,

lim e(p) =¢e(0), 1.m

pl oo

and pe(p), the energy per unit volume, is a convex func-
tion of p and e(p) is a nondecreasing function of p, All
this is proved in the Appendix.

(C) Theve are only lwo-particle bound states®: For
c>0

E N)=E(2)[N/2], (1.8)

where [N/2] is N/2 for N even and (N - 1)/2 for N odd.
More specifically, if the center of mass motion is re-
moved from (1.1) the right side of (1.3) is a minimum
if and only if N =2, Furthermore, for two particles,

Eo(2)==c%/2, (1.9)
and the ground state wavefunction is
exp(—c'x1—x2|/2){é¥—H}, (1.10)

i, e,, it is a singlet.

(D) Antiferromagnetism: In a box the ground state
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wavefunction always exists for any ¢ and a boundary
condition. For Dirichlet boundary conditions and any ¢
the ground state wavefunction is nondegenerate and its
spin is the lowest value possible,?®i.e,, S=0 or 3.

(E) Scaling: In all cases the dependence on ¢ is such
that by changing the length scale: x — |clx, the problem
reduces to the |ci=1 problem. In particular, intro-
ducing the ¢ dependence

E('N’L;C):CZE(N: lClL;C/lCi),
e(p; c)=c?elp/|cl;c/|c]).

Thus y= c/p, which is dimensionless, is the only non-
trivial parameter. In a box kz = fermi momentum
=7p/2, whence y=1uc/2ky.

(1.11a)
(1.11b)

Comments: (i) (A) fails dramatically for bosons. If
N--and L>1>0, I fixed, then’ asymptotically (in N)

E~-c¢N%/12, (1.12)

and the system collapses. Calogero and Degasperis’
investigated the HF theory in the boson case (which is
the same as Hartree theory) and showed that HF theory
yields the correct asymptotic result (1,12),

(i1) (A) and (C) rest on the assertion®: If box boundary
conditions are not imposed, it is clear that all solutions
of the Schriodinger equation are given by the Bethe
ansatz, We do not know a proof of this (except for N
=2), but shall assume it. The Bethe ansatz yields, by
inspection, that the only N-particle bound state is

:]o (1.13)

c N
zb:exp[—g? |%; = x;
17

These are all symmetric, and thus for fermions only
the singlet state (1.10) is allowed. Since E,(N, L)

= Ey(N), (1.4) holds. In the periodic case there is no
bound of the form E,(N,L)> - ac?N with o independent
of L. To see this, put two particles in the zero mo-
mentum state, whence £,(2,L) s—-c¢/L, (B) and (C) im-
ply that

e(p)= e(0) =~ c%/4. (1.14)

(iii) (B) is proved in the Appendix. It will also be
shown there that

e(p) = 7*p¥/12~ cp/2,
e(p) = 1°p%/12 = 7cp(12)1/2, p=3'2%cq
e(p) = - 02/4;

all p
(1.15)

p< 3%,

The upper bound comes from HF theory. Thus HF theo-
ry is asymptotically exact as p—~ =, and we conjecture
that the error is not O(p), as in (1.15), but only O(1).
Cft. (1. 40).

(iv) The fact, (D), that the ground state is antiferro-
magnetic with free or Dirichlet boundary conditions is
general. ® It holds in one dimension for any N-body po-
tential. It is far from obuvious that it holds in HF theory,
however,

Before turning to HF theory we comment on another
important and intriguing property of the delta function
gas in the free case:

(F) Only reavvangements can occuyv in a collision:
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Let us ignore statistics (i.e., symmetry of the wave-
function) and consider the time dependent Schrodinger
equation

=20 (1.16)

As an incoming state take any number of bound com-
plexes of the form (1.13), each with arbitrary particle
number and momentum. Then, as shown by McGuire, 2
there will be no breakup or exchange of momenta., The
outgoing state will consist of the same complexes, but
with rearrangements of the particles. There will, of
course, be phase shifts.

Property (F) is reminiscent of a similar property of
solitons. ® If one cannot observe which particle is in
which complex, then the solutions to the linear equa-
tion (1.16) behave just like solitons. The latter occur in
nonlinear partial differential equations for a function
¢(x,t) of one xc R and time, for example in the non-
linear Schrodinger equation’

.0
-A@=-2c|o|? :z—a—;g. 1.17)
What, if anything, is the connection between (1,17)
and (1.16)? One possibility? is to write # in secound-

quantized form as

H={ |vilx,t)|2ax — ¢ [ [9*(x, P10, ]2 dx.

If ¥, which is a quantum field, is replaced by a classi-
cal field, then the equation of motion becomes (1.17).
This connection is nof the one we wish to emphasize,
Rather, it is that the time dependent HF equations for
(1.16) are a generalization of (1.17) to N coupled equa-
tions of the form

—A%-zcﬁ)%:g%%‘ ) (1.18)

where the ¢;(x,{) are N orthonormal functions and

plx, t)= Zf lo;te, ) |2 (1.19)

Unfortunately we can say almost nothing about (1, 18)
when N > 1, but if property (F) of the original
Schrddinger equation is any guide, (1.18) might be worth
further study.

Now we define HF theory. Let
¢:{¢1)=-=a¢N}, (1°20)

be a family of N orthonormal, single-particle functions
of space and spin, which we write as

bi(x,0) =5 (x) + +4i(x) ¥, (1.21)

The ¥; satisfy one of the three boundary conditions.
Define

D,=(N1)1 /2 detly; (x;, 0)], (1.22)
so that Dy, Dy)=1. Then
EW =D, HD )y =T;+T;+ U, +K,, (1.23)
N
Tiz? [ vdt(e) |2 dx, (1.24)
U,==2c f phlx) pylx) dx, (1.25)
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N
pi(x)EjEI 93 [, (1.26)
N
K,=2¢ [ ]ZI) P33 ()* |2 de., 1.27)
Ja
The HF energy E}¥, ERF, or E4F is defined by
E¥F—inf £(y) = E. (1.28)
¢
A more elegant way to write U, +K, is to define
N
pulr) =20 (U, 45)=p4(x) +pix), (1.29)
N
Tw(x)=jzi> (45, 00;), (1. 30)

with 0= (0", 0%, 0%) and the o' are Pauli spin matrices,
and where (+,*) is the inner product in spin—space,
Then

Uy +K,=- (C/Z)f o) = Ty(x) - T (x)} ax.

In conventional teminology, — ¢ [ p,{x)?dx is the “direct
interaction” and the remainder of (1, 31) is the “ex-
change interaction. ”’

Equations (1.23)—(1.28) define unvestricted HF
theory because we have not assumed that the ¥; are real
or that they are product functions of space and spin,
Restricted HF theory is defined by the further restric-
tion that for some integer n,, 0 sn, <N,

Py =fi(x) 4 (A <js<n,),
(pj(x) =fj(x) Vv o(n,<j <N},

(firfiy=0;; if 1<¢, j<n, orm,<i,js<N.

(1.31)

(1.32)
(1.33)

For the moment we do not assume the f; are real, but in
the next section we will show that they can always be
chosen to be real when N is even, (1.23) and (1. 26)
become

=2 |1, |2,
j=1N (1. 34)
px) = 21 | 7,000 |2,

N d
c’(zp)=f?1 [ Vi) [Pdx = 2¢ [ plx)psx)dx.  (1.35)

In practice, HF theory is usually taken to mean the
restricted HF theory. It hardly needs to be said that
since £ (¥) is not quadratic in the ¥;’s, the restricted
and unrestricted theories are not necessarily the same,
We will show that they are the same when N is even.

By standard arguments!, if there is a ¢ that actually
minimizes the HF energy (1.28), then the ¢, (of f;) will
satisfy the HF equations. In restricted HF theory these
are

- Af(x) = 2cp3(x) fi(x) =¢€;f;(x), j<n,

(1.36)
- &f;(x) = 2cp}(¥) f1(x) =€, f1(x), §>n,.
In unrestricted HF theory they are
- AY,(x, 0) = cp, () d; (x, @) + c[Ty(x) » O] (x, 0)
=¢€;9;(x, 0). (1.37)

862 J. Math. Phys., Vol. 19, No. 4, April 1978

The €;, j <n,, are the n, lowest eigenvalues of the linear
operator - A — 2cp;; a similar statement holds for the
remainder of (1, 36) and (1, 37) (see the Appendix).

If the eigenvalues €, are replaced by the operator
i3/t then (1.36) and (1. 37) become the time dependent
HF equations. If N=2M, n,=M and if p;=p;, we re-
cover (1.18) (with M in place of N) from (1. 36).

The restricted HF theory (1. 35) with periodic bound-
ary conditions was investigated by Overhauser. ? One
possible choice for the f; is plane waves; these satisfy
(1. 36) and the pj(x) are constant. Conversely, if the
pi(x) are constant, the f; satisfy (1. 36) and must be
plane waves; the same is true of (1.37)., Overhauser
found that for every ¢ >0, and N sufficiently large,
there is a choice of the f;(x) which gives a lower energy
£ (¥) than the plane waves. Thus HF theory breaks the
translation invariance of the system. Overhauser did
not find the optimum f;, however.

Our aim will be to prove some facts about HF theory.
When N =2M there is obviously some symmetry in the
problem and we can make considerable progress in this
case, When N is odd we can do very little, but if one is
interested only in the thermodynamic limit of the energy
(1.5)=(1.17), then even N is sufficient. We will prove
the following [cf. (A)—(E) for the exact ground state):

(A") (A) is true for HF because EXF = E,

(B’) If the system is in a box, restricted and un-
restricted HF theory exist in the sense that there is
a ¢ that minimizes the HF energy. (B) holds for the HF
energy per particle, e®F(p). This is proved in the Ap-
pendix.

(G’) If N is even, then restricted and unrestricted
HF theory are the same in the following strong sense:
After a suitable elementary transformation (see Sec.
II, after Theorem 1), ¥ must be of the form

Di=fi0) 4, Pnsp=fi0 4, j=1,2,...,N/2
with the fj(x) real, This is Theorem 2.

(1.38)

(C" (C) holds for HF theory if N is even. In the free
case and N =2 there is a zp:{z/)“ wz} which minimizes

E@). Forany N>2, and ¢={¢,..., ¥

EW > EFF@)(/2). (1.39)
Thus, for N even,

EFF (V) =EfF(2)(V/2), (1.8%)

and there is no minimizing ¥ for N=2M > 2. For two
particles

ERF(2)=- /6.

The minimizing function is unique except for transla-
tions and is of the form (1. 32) with n,=1 and

Fi(x) =f(x) = (c/4)! ? sech(cx/2).

This function is a normalized solution of the time inde-
pendent, nonlinear Schrddinger equation. We cannot
prove the absence of odd particle bound states, but con-
jecture that there are none,

(1.97)

(1.10%)

(D) I N is even, then the system is antiferromag-
netic by (1.38). Thus, the HF wavefunction D, not only
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has S“=0 but it also has a definite spin angular momen-
tum S=0,
(B’) Scaling also obviously holds in HF theory.

We conjecture that the obvious extension of these re-
sults to N odd also holds, but we cannot prove it. In
particular, in the free case we cannot prove that there
is no three-particle bound state in restricted or unre-

stricted HF theory.

Clearly our main result is (C’), By continuity in L,
the very low density gas has M =N/2 bumps in the BF
density, p,(x). We do not know if these are regularly
spaced, It is tempting to conjecture that they are, and
that the bumps remain regularly spaced but flatten out
as p increases. It is not true, however, that there are
bumps for all finite N and L, Overhauser’s result not-
withstanding. As we shall see for N =2 and periodic
boundary conditions, the plane wave solution is minimal
for small L, i.e., CL <7’ There is no analog of this
bifurcation for Dirichlet boundary conditions. What is
likely is that for every N =2M, M odd, there is a bifur-
cation of this sort with periodic boundary conditions,
but that the critical density at which the bifurcation oc-

curs increases to infinity as N increases. For M even,
the bifurcation may not occur. We will solve the N =2
case completely, For N =4 we have a solution (which
always has two regularly spaced bumps) which we be-
lieve is correct, but we cannot prove this.

8 9 10 W 12 13 14 <

- h/° '

\ Lower (/
4= “LOWEST HF VALUE /&
(this paper ) i &

-
's
Is

2

1
/o
<
S

S
=

o
=
<

w

FIG. 1, Ground state energy per particle, in dimensionless
units, versus density per unit coupling of the attractive delta
interacting one-dimensional fermi gas in various approxima-
tions. PW refers to plane wave state, O, to Overhauser
state.  Dashed curves are lower bounds: (1.40) to HF state,
and {(1,15) to exact ground state, Upper dot is (lowest) HF en-
ergy (1.8') and (2,11) found in this paper, while lower dot is
exact value (1,7), (1.8}, and (1.9},
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A final remark concerns the accuracy of EZ¥, Be-
cause of scaling, low density is the strong coupling
regime. We see from (1,9) and (1.9’) that E,z/E =4 in
this limit. As p—~, E¥¥/E—~1 [cf, (1.15)]. Parallel to
(1.15) there are the following bounds (proved in the
Appendix) on the HF energy in the thermodynamic limit:

e"F(p) = 7’p?/12-cp/2, all p,
e"F(p) > n%p?/12 = mpc/B, p=c/m,
e"¥(p) = ~ c¥/12, p<c/m,

These numerical results, (1.15) and (1.40), together
with the Overhauser?® result, are shown in Fig. 1. There
%11 for the ground state energy of

(1.40)

exists exact results
this model,

il. PROPERTIES OF HF THEQORY

The following establishes (G’) and (D’).

Theovem 1: Let N be even, N=2M. For any boundary
conditions the unrestricted HF energy defined by (1. 28)
is equal to

Ef=inf £(¥),
vE R
where A is the restricted class of functions of the form
(1. 38) and with the f; real.
Proof: Since K,z 0, and K,=0 when $c £, it is
enough to prove that

=it £),

(2.1)

(2.2)

E'W =T, +T;+U,, (2.3)

has the property stated in the theorem. Let ¢ be given
by (1.21) and p} by (1.26). Regard pt as fixed and define
Volx)=4[p;(x) + p;(x)]. Then

EW) =T+ Ty=2¢ [ Vyx)p,(x)dx

+c [ [py(x)? + p3(x)?] dx (2.4)

=T+ T;=2¢ [ Vo) py(x)dx +2¢ [ Vy(x)dx. (2.5)
For any real V(x), think of the right side of (2.5), with
V, replaced by V, as defining a functional € (), and
then define Ey =inf, & (¢), Now since ¥~ () is quad-
ratic, Ey=EY =inf,c ;¢ y(¥). This is true if Hy==-A

- 2cV(x) has M eigenvalues, €, S¢ <--0 < €4, which
satisfy the max—min variational principle; the corre-

sponding eigenfunctions can be chosen to be real, so
¥ie;+2c [ Vix)dx. If Hy does not

that yc R and E, =234,

have eigenvalues, any minimizing sequence {4}, n
=1,2,++- can obviously be chosen to be in R. Thus, for
any unrestricted ¥,

EW)= &= Ev, W) > EF > int Y, (2.6)
However, for all ¥ and V
Evi) = igf évld)

=Ep, 2@ =T +T5 - (c/2) [ py(x) ax. (2.7

If YR, the latter quantity is £ (@), since py=p;. Thus
E$>EX, for all V. Inserting this in (2.6), the theorem
is proved. .
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Remark: We have proved that when N =2M, restricted
HF theory and unrestricted HF theory (with paired,
real functions) agree. We have not proved, however,
that one must take y € . There are two reasons for this.
One is that if a minimizing ¥ does not exist (as it will
not in the free case with M > 1), then one can have a
minimizing sequence in (1. 28) with ¢ ¢ 4. The unbound-
ed particles will simply “leak away” to infinity and the
form of their orbitals is immaterial. The second rea-
son is that we can always make a rotation in spin space
so that, for example, 4 and + are replaced by 2°1/2(4
++) and 2°/2(4 = ¥), respectively. Moreover, such a
rotation in spin space can be done independently for
every pair of functions in (1. 32) without changing the
energy. In fact, it is well known that one can always
make the following change in ) without changing £ (¢):

Let U be an N XN unitary matrix, Given ¢, define ¢’
by
N
bi=2 Uiy (2.8)
J=
Then & () =& (¢'). We shall call a transformation of the

form (2. 8) an elementary trvansformation. Such trans-
formations also preserve other quantities:

Ty=Tg,
psx)=py (x), allx,
Tx)=Tu(x), allx,

We can now state the canonical form for ¢ when N is
even, Essentially, ¢ must be in A.

Theovem 2: Suppose ¢ > 0, N=2M, and ¥ is minimiz-
ing, i.e., &(¥)=ERF, Then, after an elementary trans-
formation, ¥ is necessarily of the restricted form
(1.38). The functions fi, ...,f, are real, orthonormal,
and satisfy

hfi=€;1;
M
h==A=2c2; fix)
et

Moreover, €,...,€, are the M lowest eigenvalues of k.

Remark: The condition ¢ > 0 is important. If ¢ =0 and
we take periodic boundary conditions on [0, L] and N
=4, the following is a minimizing ¢ that cannot be
brought into the above canonical form:

Y=L, =LY,
by =L 2 explikx)t, 9= 1(2L)"/ % exp(—ikx) (4 + ¥)
with & =27/L.

Proof: The proof of Theorem 1 shows that X,=0.
When this statement is put into rotation invariant form,
one finds that [17,(x)|2dx=0. Hence 7,(x)=0, for all
x. After an elementary transformation, each ¥; satis-
fies (1.37) (with 7,=0) and the ¢; are the M lowest
eigenvalues of i == A = ¢p,{x), each counted twice, of
course, The reasons for this are given in section {i) of
the Appendix. In the free and Dirichlet cases, the eigen-
values of — A +V(x) are always nondegenerate; in the
periodic case an eigenvalue can be at most doubly
degenerate.
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Let the distinct eigenvalues of % be ¢, <¢, <¢,, ete.,
with at most a double degeneracy for each ¢;. We can
think of putting the ¥; into each level in turn. We argue
inductively that, as each level is filled, the ¥, must be
of the form (1. 38). The difficulty occurs when the last
level is two-fold degenerate {four-fold including spin),
but there are only two particles to fill it. First, con-
sider a one-fold level, The (spinless) solution f of if
=¢f must be real, The general solution of A =¢€ is
then a linear combination of f(x) 4 and f(x) ¥. After an
elementary transformation, any pair of orthonormal
solutions can be brought into this form. Therefore,

(1. 38) always holds for a nondegenerate level, Next,
consider a two-fold level, and let two real, orthonor-
mal solutions to if =¢f be called f{x) and g(x}. The four
basic functions are f4, f¥, g4, g¥. If the level has four
particles then, after an elementary transformation, the
four ¥; functions can be brought into the form (1. 38)
with f;=f, 1.1 =8.

Finally, consider the case that the last level is two-
fold degenerate (four-fold with spin), but there are only
two particles left to fill it. The previous N — 2 y, contri-
bute zero to 7,(x), i.e., T422(y;,09,)(x) =0, by con-
struction. Given a spinor a = (x,y) we define &
=(=y*,x¥), If two spinors, @, and «a,, satisfy (@, 0a,)
+(a,,00,) =0, then a,=exp(if)a,, 6 real, If we write
Yy = (@f(x) + bglx), cf(x) +dg(x)) in spinor notation, then
dy.1 is represented by the matrix A = (¢ ). Likewise,

Yy 1s represented by some matrix B. To say that Py is
of the form F{x)a,a a fixed spinor, is to say that A has
rank one, An elementary transformation replaces A by
C=sA+1B with Is |+ [¢{?>=1. We can choose s and ¢
such that C has rank one (by setting detC =0). Thus,
after a preliminary transformation we have ¥,_; = F (x)a,
By the above remark, i, must be ¢y=exp[i6(x)] F(x)a

= H(x)&, with 6(x) real. H and F are linear combinations
of f and g. There are three cases:

Case 1: H(x)=2F(x), for some x with [A| =1, By an
elementary transformation we can take x=1.

Case 2: H(x)*=)F(x), |xl =1, Again, take A=1.

Case 3: H+)\F and H*# )\F*, Then exp[i0{(x)] F(x)
=H(x) and, by complex conjugation, exp[i6(x)] H*(x)
=F*(x). Thus, exp[if(x)] maps two independent linear
combinations of f and g into linear combinations of f
and g. Therefore, expli8(x)]f(x)=R;f(x) +R,g(x) and
explif(x)]g(x) =Ry f(x) +Rypg(x). The matrix R must be
unitary. Let y=exp(iy), ¢ real, be an eigenvalue of R,
and (p, q) its eigenvector. With I(x)=pf(x) +qgx), we
have explil8(x) - p1}1{(x)=1(x). But I{x) is an eigenfunc-
tion, so explif(x)]=exp(ip) almost everywhere, Then
H(x)=exp({u)F(x) and we are in Case 1.

Thus far we have proved that the last two orbitals
are of the form ¥y =F(x)a, Py=H{x)&, and either H
=F or H=F*, We will now prove that F must be
expli8)G with G real. 1f this is so, the theorem is
proved. Write F(x) =af(x) +ibg(x) with f and g real,
normalized solutions of #y =€ and a, b real. Then a’
+b2=1. Consider the terms in £ () which depend on
dy-y and Py, Since T,{x)=0, these are

Be=2[ |VF|}x)dx
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-2¢ [ |F@)|?Vx)dx—2¢c [ |F(x)|*dx, (2.9)

with V(x) =23¥:17,(x)’. Then
Br=a"B;+bB; +5,

with
5=2ca’s? [ [fx)~g*x)]Pdx >0,

If a=0 or b=0 there is nothing to prove, so suppose
az0, b#0, and 8, 58,. There is another possible choice
for F and H, namely f and f. This second choice also
has 7,(x)=0. Suppose 6> 0, Then this second choice has
a distinctly lower energy than £(), and we have a con-
tradiction. If 5=0, then [f(x)| =lg(x)[ almost every-
where, Since f and g are real eigenfunctions of , f
=zxg, In this case, F =exp(i6)f and we are done. ]

Having proved that HF theory preserves the antifer-
romagnetic nature of the system (for N even), we now
turn to the second main result of this paper, namely
that there are only 2-body bound states in the free case
(again, N even), The proof is in two parts:

(i) Theorem 3 states that a 2-body state exists and is
essentially unique. This means not only that E§F(2) <0
but that there exists a minimizing ¢ for &(¢). Although
it is easy to show that a minimizing ¢ always exists in
the box case (see the Appendix), it is by no means ob-
vious that a minimizing ¢ exists in the free case for any
N. Indeed, when N =1 it never exists (any ¢), and when
¢ 2 0 it never exists for any N.

(i1) Theorem 4 states that when N > 2, including odd
N, &) is strictly larger than (N/2)ERF(2).

Theorem 3: In the free case, with N=2, there exists
a minimizing ¥={f(x) 4, f(x) ¥}, for ). This f is
unique except for translations, i.e., f{x)— f(x +a), and
by multiplication by a phase factor, i.e., f{x)
— explif) f(x), and is given by

Flx) = (c/4) 2 sech(cx/2). (2.10)
The HF energy is given by
E¥F(2) == c¥/6. (2.11)

Proof: By Theorems 1 and 2 we need only consider
P’s of the above restricted form, even in unrestricted
HF theory. Thus, we want to minimize

EW=W(f)=T +U, {2.12)
7=2 [ |vf(x)|?dx, (2.13)
Us=2¢ [ |r(x)]*ax. (2.14)

We claim that there is a minimizing f for W(7) subject
to { i f12=1, The only proof we know of this fact is an
imitation of the proof for a similar, but more compli-
cated, three-dimensional problem.!? The steps are:

(a) It is sufficient to consider minimization of W(f) sub-
ject only to [f?<1. (b) By using rearrangement inequal-
ities one shows that if f(x) is not real or not of one sign,
then W(f)>W(|f ). Furthermore. f can be assumed to
be symmetric decreasing. (c) If " is a minimizing
sequence, one can assume f‘™ - f weakly. Also, f‘"(x)
— fx) pointwise by Helly’s theorem.!? By Sobolev’s in-
equality (cf. the Appendix), 7" e L?N L% and all the
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£ are in a fixed ball in L*N L; this implies that £ (x)
<ax™/? and " (x) <bx"'/8, Therefore, [[f™]*~ [f% by
dominated convergence and lim supT(f™) = T(5).

It is a standard fact that any minimizing f satisfies
- Af(x) = 2¢ | f(x) |2 f () = ef (). (2.15)

By Theorem 2, f can be assumed to be real and to be
the ground state of — & — 2¢f(x)%. Hence f(x) >0, for all
x. We can solve (2.15) explicitly by multiplying it by vf
and integrating, Then

(VAR +cf* +eft=0. (2.16)
This leads to (2.10) by quadratures, with e = c%/4 by
the normalization of f. u

Theorem 4, Let N>2 (including odd N). Then for any
¢, E@) > (N/2)EEF @),

Remark: Note that ¢ is unrestricted.

Proof: As in the proof of Theorem 1 [cf. (2.5),
(2. 6)] we note that £ (%) =&, (¥) with V= (p} +p;)/2
e LYR)N L*(R). Consider the Schrédinger operator
== A=2cV(x) on L*(R) and let ¢ <¢, <+~ ¢, be the
negative eigenvalues (if any) of H (K might be infinite}.
In one dimension, standard Sturm-—Liouville theory
tells us that €; is strictly less than ¢;,;. By the max~—
min variational principle we have that for any o,
X
év(¢)>2§ei+chvzsw, (2.17)
i=
and the inequality in (2.17) is strict when K <N/2 or
K >N/2, By Hblder’s inequality
K K 2/3
DX 16,.;.{2 Je,,ym] K13, (2.18)
it i=l
and, since the ¢; are distinct, inequality (2. 18) is strict
if K> 2, Using the following Lemma 5 and (2. 18) we
have that

E@) >~ 2602 2W/21% +u/2c = f(v), (2.19)
with v = (2¢)? [V2, Thus
E@) > minflvy=-Nc?/12= (N/2)ELF(2). .

v=(

Lemma 5: Let Uc L*(R) and let ¢; <€, <~ -+ be the
negative eigenvalues (if any) of the Schrbdinger opera-
tor H==A=U(x) on LYR). Let U ,(x)=U(x) if U(x)=0
and U,(x) =0 otherwise, Then

2 ePt<f [ U ax, (2. 20)
i
with equality if and only if U=U, and U is
reflectionless.

Proof: The lemma is a consequence of the trace
formula used in the theory of the Korteweg~de Vries
equation, 1415

Sl ve)dx= 132%) le, |32 =4 [ BT (k) a,

where T(k)=7""In(l ~ [R(k)|?) <0 and R(k) is the scat-
tering reflection coefficient for a wave of momentum k.
The replacement of U by U, in (2.20) follows from the
observation that if U is replaced by U,, then, by the
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max--min variational principle, all the eigenvalues
decrease,

To conclude this section we present the solutions to
the HF equations in some special cases.

{a} N =2, periodic boundary conditions: By Theorem
2 there is one common real f(x) which satisfies

—f"(x) = 2¢f? =ef,
E¥F =3¢ +2¢ [ flx)*dx.

(2.21)
(2.22)

It is convenient to think of (2.21) as a classical equation
of motion for a particle with coordinate f in a potential
of* +ef?, with f(0)=f(L). Thus (f')?+P(f)=0, where
P(f)=cf*+ef?+a, flx)> 0 since f is the ground state
of - A—2cf%(x) (see the Appendix). Therefore, P(f)
must have two nonnegative zeros P(f)=c(f? - a?)(f2
- bY), a>b=0, If these two zeros are equal a=b<0,
f(x) = constant. The normalization condition then gives
in this case
f@)=L""2, (2.23)
and
e=E"F—_2¢/L. (2.24)

This is the “plane wave” solution to (2.21). Otherwise
there are two turning points [the zeros of P(f)] and'®

f(x) = w dn(Bx | k), (2.25)

where w, B, k are constants and dn is a Jacobi elliptic
function. Since dn” =~ 2dn®+(2—k)dn, one finds that

B=wlc, e=(r~2). (2.26)
The fundamental period of dn(x k) is 2K, where

K=1I,,y, 2.27)
with

1= fo'” (1 ~ ke sin?6) do. (2.28)

By a rearrangement inequality 7 has only one maximum
in (0, L), so

2K =BL. (2.29)

Alternatively, this can be seen by setting 8L =2xnK and
then verifying that n =1 gives the lowest energy.
Finally,

1= [ ") dx = @u?/B) T, e (2..30)
Thus

CL2411/21_1/25'Y(k), (2.31)

e=(k-2)c*21 ,]". (2.32)

Now ~ o < k<1, and it is easy to see that y(k) is in-
creasing as k goes from zero to one, with y(1) =<,
There is no need to consider k<0, for the substitution
E—— k(1 ~ k)" leaves y unchanged and merely shifts f
by half a period. Thus, the solution, (2.25), to (2.21)
holds only when

¢cL = y(0) =177, (2.33)

and when k=0, (2.25) reduces to (2.23). Since [{ dn’
=15/, we have for (2. 25)
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E=(¥/2)[(k=2)I}, +1,,,173,], (2.34)

We claim that (2. 34) is less than (2.24) for £> 0,
Using (2. 31) this is equivalent to

Iy <1y gl @ =Ry yy =1y ]
B fo'/z(l—ksinze)“z(l—kcoszmde. (2. 35)

By the Schwarz inequality the right side of (2.35) is
greater than { [5/%(1 - kcos?6)!/2de}i=1f,,.

To summarize: The HF solution is

cL < 7*(plane waves) cL =7l
p (2.24) 2.32)
EHT (2.24) (2.34)
Slx) (2.23) (2, 25),

f is unique except for translations.

In this case there is an interesting bifurcation at
cL =7° [the solution (2.23) exists for all L, but it is not
the minimum when cL > 7], Contrary to what Overhauer
found® in the thermodynamic limit, the plane wave solu-
tion can be the lowest for small coupling, It is also
worth noting that a low-lying eigenfunction (not the
ground state, however) of the Schridinger equation has
nonanalytic behavior at cL =4, at which point the
Bethe ansatz does not hold, !’

(b) N =2, Dirichlet boundary conditions: Since f(0)
=f(L)=0 and f(x) = 0, we must have [following (a)] P(f)
=c(f2=a®)(f?-b?, a>0, b=0. This yields!'®

Fflx)=—wen(px +K}k) (2.36)
[Note: f+wsn] and

2K =214 ,,=PL, e=p*1=2k), B¥/wi=c/k. (2.37)
The normalization condition is

1= fOLf(x)2 dx = (2w /B = V) Ly o + 1o}, (2.38)
which implies that 0 <k <1 is determined by

ceL =4I 531 ;9= (1 =RV 5} (2.39)

It is easy to check that as % goes from 0 to 1 the right
side of (2. 39) increases monotonically from 0 to =,
Therefore, k and the solution (2, 36) is uniquely deter-
mined for each L, There is no bifurcation as there is
for periodic boundary conditions [case (a)].

(c) N=4, Periodic boundavy conditions: Two func-
tions, f;, and f, are to be found. Plane waves, namely
Fi6) =LY, fiolx)=L" 2 exp(i2nx/L), satisfy the HF
equations (1. 36) with V(x) :pj(x):Z/L. This choice can~
not minimize £(¥) however because, by Theorem 2, f;
and f, can always be chosen to be real eigenfunctions of
~ A =2cV(x). The functions f; and fg(x)
=(2/L)2cos(2mx) are such a choice, but then V(x)
=2/L#f,(x)? + f,(x)?, and the HF equations are not
satisfied. This remark applies to all cases N =2M, M
even, and therefore the same bifurcation as in case (a)
can occur only when M is odd.

An obvious choice for f; and f, which satisfies the HF
equations is
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f,(x):w,dn(ﬁxlk),
folx) = wycn(Bx | k),

with BL =4K (not 2K), We omit the details because we
cannot prove that (2. 40) is minimizing, but we conjec-
ture that it is. pi(x)=f,(x)® +£»(x)? has two equal

bumps, !¢ and (2. 40) goes over into the correct solutions
as L~ or L=0,

(2.40)
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APPENDIX

Here we sketch the proof of some basic facts which
are needed in the main text, particularly (B), (B'),
(1.15), and (1.40).

(i) In a box (with either boundary condition) there is a
minimizing ¢ for £(¢) in both the restricted and unre-
stricted HF theories. Basically, the proof is the follow-
ing: We take each ¢, € W!, i.e., the functions such that
lFll=fif12<e and [[Vf[?=]|VfI? <. If feW*, then
fe L™ because

L) 2= [T LA oXT ) + ()9 *(9)]dy
<2[ 7 1A Pav 2L [ Ry )
R AIRINAIE

Hence y,c L?, 2 <p <= and all the integrals in £(3)
make sense. Also £ (¥) is bounded below; this follows
either from the Rayleigh—Ritz principle (A) or from a
Sobolev inequality. The basic fact we shall use is the
Sobolev imbedding theorem that W' of a box is com-
pactly imbedded in L?, 2 < p <, This means that if y™
is a minimizing sequence for £{3), £@'"™)— E™, then,
by passing to a subsequence if necessary, there exists
a = such that $i" — ¢7 in a L® norm. The L? conver-
gence, in particular, ensures the orthonormality of the
Y. Thus, for all the integrals in £(¥) except the Kinetic
energy, i.e., 8(9)=E£@) - T,, we have that 5(3'™)

- 8(~). Furthermore, f— [ |Af |? is lower semicontin-
uous, so that liminf,.. &@'")= £@). Therefore, y°
minimizes £ (). The argument that ” satisfies the HF
equations (1.36) and (1. 37) (after an elementary trans-
formation) is standard and simple. The eigenvalues in
(1.36) and (1.37) are the lowest eigenvalues of the
linear operator — A - 2¢p, (x) because £(¥) is quadratic
{(not quartic!) in each f; (or ;) [ef. Eq. (1.31)).

(ii) The proof of the existence of the thermodynamic
limit for the ground state energy per particle in the
Dirichlet case is standard. The same proof works for
both the Schrodinger and HF theories. The basic obser-
vation is that

NTEL(N,L)= (2N)E (2N, 2L), (A1)

and so N7'E ,(N,N/p) is decreasing in N and bounded
[by (1.4)], and therefore has a limit. (Al) is proved by
dividing the box [0, 2L] into two boxes [0, L] and [L, 2L]
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and using as a variational function the same N-particle
function in each box. No “corridors” are required be-
cause the delta function has zero range. The limit of
N1E ) [or NTIEFF(N)] in the free case can be proved
either by repeating the previous argument or else by
using the explicit formulas, given in the text, for these
quantities,

The convexity of pe{p) in p is standard and follows
from (Al). The monotonicity of e(p) comes from the
fact that decreasing L raises the kinetic energy; alter-
natively one can say that Dirichlet functions for one
value of L are always Dirichlet functions for any

larger L.
(iii) With e(p)=limy. .N"E,(N,N/p) we want to show
that

lim N E(N,N/p) =e(p).
N-~=

(A2)

Our proof will hold for any statistics. On the one side
we have the inequality

Ep(N,L) <EpN, L), (a3)

because the Dirichlet functions can be used as varia-
tional functions for the periodic case. To establish an
inequality in the reverse direction, let g be an infinite-
ly differentiable function on [0, ) such that gx)=1, x
=0; g(x)=0, x =1 for some fixed I >0, and 0 <g(x) <1,
Assume L =27 and let fix)=1-glx)~-g(L ~x), Fix)
=117, flx;,). Thus, if ¥ is periodic, then ¢ =yF is
Dirichlet., We calculate the variational energy

E=(p|H|o)/ |, (a4)

assuming that ¢ is a (complex) normalized, periodic
ground state of H, Hy=E}. A simple integration by
parts in the kinetic energy term yields

E~=E+<¢’(P>-1§ f |¢’(x1,---7x1v)‘2

x [Vf(x,) P l'AII Fix)dxyeee dxy
F#E

5E+f0Lp(x)[Vf(x)]2dx @loyt. (A5)
In the last inequality we have used | f(x)! <1 and
N -~
P(x)=‘21f ld)(xl,go.,xN)’zdxlvoodxlooode. (AG)

In these integrals, [dx includes a summation on the
spin variable, and all integrations are over [0, L].
Next, we bound (¢ |¢)=/ 1¥/*F, and write f2=1-k,
0<hi{x) <1, Since 1}, [1 = h(x,)]=1-% % nix,), we have
that

wlo)= 1= [ () hiw) d. (am

Choose I =(2p)™, p=N/L, and g(x)=1 - sinmpx, 0
<x <. Then (Vf)%(x) = (7p)*k(x) and

1=, " o) (x) dx
= fol cos’mpx[p(x) + p(L - x)] dx. (A8)

I(¥)=3% if p(x) = const=p. p(x) need not be constant,
however, but consider ¥u(xy, ..., x)=9lx; +b,,..,xy

E.H. Lieb and M. de Ltanc 867



+b) (mod[0,L]). For all b, ¥, is also a ground state
wave function, and L™ [ dbp,(x)=p, whence L™ [I(4,)dD
=3. Thus, there is some b such that I{2,) <3.
Therefore,

EDW; L) - EP(Ny L) < szz'
(A9) and (A3) imply (A2).

(A9)

A similar argument can be carried out for the HF
theory to show that

lim NTLEEF(N,N/p) =lim N'EEF(N,N/p) = "% (p).

N~ N= o

(A10)

Replace each periodic §;{x,0) by @;{x,0)=¢,;(x,0) f(x;).
The ¢; are still single particle functions as required by
HF theory. They will not be orthonormal, however, but
this defect is easily remedied by letting D, = (N!)1/?

X det[ ¢, (x;,0;)] and estimating D,,HD,)/D,,D,) as in
the Schrodinger case, We omit the details.

(iv) We want to show that

lim e(p) = e(0), (Al11)

Pl
both in the Schrédinger and HF theories. The left side
of (Al1) exists because e(p) is monotone in p. On the
one hand, E,(N, L) > Ey(N) by the variational principle,
so lim,,, e(p) = e(0). Now let € > 0 and, in the Schrodinger
theory, approximate the two-particle ground state, y,
given by (1.10), by an infinitely differentiable function
¢ of compact support (i.e., @(x,%9;0;,0,)=0if x|
>bh or {x,] >b) such that {¢,H®)/{(@, @) = E,(2) +e. Let
N =2M and let

Z»D(xla--- --70N)

= @(xy, X9; 01, 09) @(x5 +2b, x4 + 2b; 03, 04)

y XN T e

cor @y +Nb,xy +Nb; Oy, Oh).

Then (), HY)/{, ¥) = (N/21{E(2) +¢}. (Actually, $ should
be antisymmetrized, but this will not affect the con-
clusion because the delta function has zero range.)
Since ¥ is also a Dirichlet function for any box with

L =Nb, and since e(0) =E,(2)/2, we have that lim,, 4e(p)
=e{0) +¢/2. Letting € ¥ 0 proves (Al1l). The same proof
works for HF theory by choosing the approximating
two-particle ¢ to be of the form

@(xy, %93 01, Og)
=g (xy) g(y) ) Flx) ¥ = ¥4}

with f(x) given by (1.10’) and g(x) an infinitely differen-
tiable function with support [- b, b]. This choice pre-
serves the single particle nature of the HF variational
function,

(v) Bounds on the enevgy: In a box the kinetic energy
operator T=-7;4; is bounded below by its lowest
eigenvalue which, for large N and fixed density p is

T = Nup?/12, (A12)

The state that gives (A12) is a determinant (spin zero),
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and we can use it as a variational function. Thus
e(p) < e"F(p) < 7%p?/12 - cp/2.

To obtain a lower bound in Schrodinger theory we write

H=T+W=T+W]+(1~-X)T, 0<sx<l, W

=~2c Eﬂqé(xi ~x,). The first term is bounded by its

ground state energy in the free case which is, for large

N [cf. (1.8) and (1.9)], = ¢®N(42)"!. The second term
is bounded by using (A12). Thus

e(p) = — c2(an) + (1 = Vrlpd/12.

(A13)

(A14)

The same argument applies to HF theory, except that

c?/4 is replaced by ¢®/12 [cf. (1.8) and (1.9%)],
e"F(p) = = c2(120) + (1 = N)np?/12. (A15)

Maximizing (A14) and (A15) with respect to A yields

e(p) = 1p?/12 = mep(12)™/2, p=3l/%/7,

(A16)
e(p) = - c%/4, p=3"%/x,
HF( ) = +2.2/19 -
e"¥(p) = 1’p?/12 - wcp/6,  p=c/m, (ALT)
eF(p) = - c¥/12, p<c/m.

These results were given in the main text, (1.15) and
(1.40). It is noteworthy that (A17) and (A13) are ex-
tremely close when p = c/7.
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The theory of supergravity in (2+ 1) dimensions, both with and without a cosmological term, is presented.
In the latter case, we discover a manifold that has torsion but no curvature. We make extensive use of
differential forms and the dimensionality of our space-time allows us to use SL(2,R) spinors. Our results
enable us to discuss in an accompanying paper an action describing the theory of a spinning membrane.

. INTRODUCTION

There has recently been considerable activity in the
study of local supersymmetry. t Although the major
motivation has been towards constructing a renormali-
zable theory of gravity, supersymmetry has also played
an important role in spaces of lower dimensionality.
Indeed, one-dimensional “supergravity” coupled to mat-
ter may be used to describe the spinning pa.rticle2 and
the analogous theory in two dimensions describes the
spinning string, * which corresponds, when quantized,
to the dual models of Neveu—Schwarz* and Ramond.’

In one dimension, pure “gravity” is clearly trivial
whilst in two dimensions, the Einstein Lagrangian is

a divergence and the Rarita—Schwinger action for a
vector-spinor field identically zero. In three dimen-
sions, however, neither of these statements is true and
this leads us to consider theories of two-dimensional
extended systems (membranes) possessing more com-
plicated actions than the volume element analogue of the
relativistic string6 (or its supersymmetric counterpart).
In fact, there seem to be anumber of physically distinct
actions, all of which may be cast into the form of three-
dimensional field theories, and we discuss these in
more detail in an accompanying paper Ref. 7.

Since the membrane actions that we shall discuss in
II require the theory of three-dimensional supergravity,
the remainder of this paper is devoted to the matter
free case. We feel that supergravity in three dimen-
sions has its own intrinsic interest, particularly since
we can no longer use Majorana spinors (we consider
only simple supersymmetry) and it is not obvious, a
priori, that the theory should be similar to its four-
dimensional counterpart. We have also found that dif-
ferential forms may be used to great advantage and in
the next section we give a brief survey of these tech-
niques, together with a summary of useful formulae
for SL(2, R) spinors, which we use throughout.

Ii. DIFFERENTIAL GEOMETRY

In this section we present our notations and outline
the essentials for the differential geometry required in
our analysis. The use of the exterior calculus of differ-
ential forms is widely appreciated by geometers and a
physicist’s eye view is given in Ref. 8 which also in-
cludes application to extended systems and detailed re-
ferences to the mathematical literature.

Throughout our work we assume that we are dealing
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with a three-dimensional C® manifold endowed with a
metric g of signature + 1 and a connection w. A gen-
eral tangent vector field may be written

V= v"a,. (2.1)
and a general co-vector field may be written
p=p;e’, (2.2)

where ¢ is a basis set of 1-forms and 3, the correspond-
ing dual basis

e‘(aj}:éji. (23)

We can regard the components v* as a set of O-forms
which transform under A € GL(3, R) according to the rule

viptio Al (2.4)

The connection allows us to covariantly exterior differ-
entiate these 0-forms as

Dyt = apt+ wijvj, (2.5)

where d denotes ordinary exterior differentiation and
the connection 1-forms w*; transform inhomogeneously
under a GL(3, R) transformation;

w AR = AT WF — dA, (2.6)
The restriction to 0-forms may be removed by replac-
ing the ordinary product w';»’ in (2.5) by the exterior
product w?; A v’ if v7 is a vector-valued p-form. We may
extend the concept of exterior covariant differentiation
to any field transforming under a representation of
GL(3, R) and furthermore we impose the condition of
metricity on the connection;

Dg;; =0, 2.7
where
g:gijei® ej7

i.e., g;; is a tensor-valued 0-form. The presence of
a metric allows one to introduce throughout the manifold
a field of orthonormal frames €% and we have
gle®, &) =n® =diag(- 1, + 1, + 1) (2.8)
and
Dgp=Dngp =0 => wyp = — Wy, (2.9

To obtain w% from the connection components r*,,
expressed in terms of a coordinate basis we need only
use (2. 6):
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e, u, =et wly - de”, (2.10)

where ¢ is the conventional vierbein (¢} e,,=g,,)
(more precisely dreibein here) and

Wb, =T, dx, (2.11)

Clearly, we remain in an orthonormal basis if we
restrict the GL(3, R) transformations to belong to the
subgroup SO(2, 1). Since SO(2, 1) is a three-parameter
group it is convenient to introduce a one-index set of
1-forms, w° related to the two-index set by

a

W =— €% 0™ (2.12)
where Latin indices a, b, - .. are elevated by means of
the orthonormal metric 7% and €%° is the alternating
symbol (€**? =+1).

A general p-form field, ¢, occurring in our theory
will transform under a representation of SO(2, 1) near
the identity according to

0¢ =1S,¢ (2.13)
where
[Sm Sb] - €abCSc- (2 14)

The exterior covariant derivative then takes the form

Do =dop+w" A S,0. (2.15)

The eight forms 1, €%, ¢ A € (a1 b), e* A €® A € generate
the exterior algebra in the cotangent space of our mani-
fold and their Hodge duals are given by

abc __

€ *(e® A eP A e®)=dual of (A & A €°),

ab c ab

€ =™ = (" A OY),

€L o o = w(ed), (2.186)
€=30%N €,=+(1).
The ¢ forms satisfy the following algebraic identities:

€ g, = Onqy + 88

4
€ T 53€p,,

E €y =Bie, - ey, (2.17)
P Ae,=db.

We also observe that € is essentially the volume
element for our space:

€=(1/31)€ 0% A " A €€ =(1/3)€ .8 268 dx*
A dxY A dx®
or
e=ed"n dxtn dx’ (2.18)
where
e =dete? = (- detg,, ).
We define the torsion 2-form, T°, by
T*=De" =de® + €y n W° =5T%.e" A € (2.19)
and the curvature 2-form, F°, by
D¢ =S,F°A ¢

F=iF. e ne

(2.20)

F=dw® - %€, 0w’ A of. (2.21)
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F° is related to the normal two-index curvature 2-form,
Rub» by

Ft == %€ab¢Rbc

RY% =Ry e 1 &

(2.22)

By exterior differentiation of the definitions (2.19) and
(2.21) one obtains the Bianchi identities:

DTa:—€ab/\.Fb
DF* =0,

(2.23)

We shall find it useful to employ in some of our mani-
pulations the concept of interior multiplication. ®® Sup-
pose X is a tangent vector field and ¢ a p-form, then
we define left interior multiplication® by

X o =Xy...0, (P A e .0), (2.24)
where
B, (€A eF A o) =80 A e = B8P A s
(2.25)

Let us illustrate our formalism by a simple example~
free gravity in three dimensions. The action is

S=fe*r F,= [A, (2.26)
Since ¢* is a 1-form and F® is a 2-form, A is a scalar-
valued 3-form and so may be integrated over an ori-
ented 3-chain® to give a reparameterization-invariant
action. To obtain the equations of motion we vary the
frames, ¢, and the connection, ®?, independently. The
frame variation gives us immediately

F=0 (2.27)
whilst

BF® = d(bw,) — € 4o w” A 00°,
Since

e® A d(dw,) =de® A bw, — d(e® A dw,)
we obtain

SA=0e"A F,+ (de® + €% A W) A bw, ~ d(e® A dw,).

(2.28)

The last term is an exact form and can at most affect
the boundary conditions of the manifold under consider-
ation. Using (2.19), the 0w’ variation therefore gives

T°=0. (2.29)

Thus, the only solution to the Einstein—Cartan theory
in empty 3-space is Minkowski space. This is not sur-
prising in view of the fact that the conventional Einstein
equations in empty space are

K,,= 0, (2.30)

where K, , is the Ricci tensor, and we note that the 6
independent components of the curvature tensor are
therefore uniquely determined by it.

For completeness, let us show that our action (2.26)

is indeed the conventional Einstein action. Using the
definition (2.20) we have
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A:%(’a/\ e epFabc.

abe

But e® A e® A e =€,
Hence
A:%€€achabc
== 1€ ey Ry,

from (2.22). Using €€,y = 650} — 8085 and the antisym-
metry of R on both pairs of indices, we finally obtain

A=3€R™,, =3€R,
So

S=[3d®xeR (2.31)

where in the final step we have used (2. 18).

Since we intend to supersymmetrize this action, we
conclude this section with a brief survey of the spinors
we shall use. The covering group of SO(2, 1) is SL(2, R)
[isomorphic to SU(1, 1)] and hence we may utilize real
two component spinors. The generators of SL(2, R)
satisfy (2. 14) and may be realized by the matrices 3v,
where

01 01 1 0
')/1: 1 0 , ’}/2: (2.32)

Yo=

~1 0/ 0 -1

These matrices also provide a realization of the
Clifford algebra in three dimensions,

(2.33)

For any two-component spinor, ¥, we define its adjoint,
b, by
P=u"y"

and we have only two bilinear invariants

[‘)/m Y ]«» = 2’7.:1;

(2.34)

¥ (pseudoscalar)
and
Yy, ¢ (vector).

The exterior covariant derivative of a spinor valued

p-form ¥ is given according to (2. 15) by
DYy =dy+ 3y,0" A . (2.35)

The virtue of using orthonormal frames is particular-
ly apparent here, since we can always use the constant
y matrices (2. 32). Finally, we shall also require the
components of our spinors to mutually anticommute
(i.e., to be odd elements of some Grassmann algebra)
and for any two such spinors we have

by = By,
DY elly == Uy¥ally (2. 36)

while for any three spinors of the above type, we have
the Fierz re-arrangement formula

@14’2)1/’3 == %Z‘/ (EIVA lpa)VA Py
A (2.37)

va=1,7v5 =1,

I1l. FREE SUPERGRAVITY IN THREE DIMENSIONS

In the usual approach to supergravity one takes the
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basic fields to be the vierbein ¢}, and the Rarita—
Schwinger vector-spinor field x, . In our language these
are replaced by the frames themselves and a spinor-
valued 1-form x. The relation between these variables
is

e=elds, x=yx,d". (3.1)

We take as our action the sum of the free gravity
action (2. 26) and the Rarita—Schwinger action for a vec-
tor spinor. The Lagrangian 3-form A is then given by

A=e*A F,+(i/2) x A Dy, (3.2)
where Dy is given by (2. 35).

To obtain the equations of motion, we vary the frames,
the connection and the spinor 1-form, X, independently.
The variation of Dx is given by

8(Dx) = 8(dX) + Y w* A 8X = BYoX A bw

=D(6x) — 3¥,X A dw,. (3.3)
Hence, the total variation is
BA=06e* A F,+ibx A Dy +[T%= (i/8)xv. A X]A 6w,
+an exact form. (3.4)
The equations of motion are therefore
F*=0, T°=(i/8x¥*Ax, Dx=0. (3.5)

It is a characteristic feature of this “first-order”
formalism'® that only two of these equations have dy-
namical content, the torsion equation being an alge-
braic one which allows us to solve for w in terms of
the frames and x. We can decompose the connection w
into a torsion-free part, ©, and an additional part, the
contortion 1-form, X%. The torsion-free part, W, cor-
responds to the usual Christoffel connection via equa-
tion (2.10) while from (2.19)

T =%, A e, (3.6)

We may solve (3.6) to obtain the components of X%, in
terms of the components of 7°:

2>\abc =T ca~ Tase = Tocas (3 )]

where

Tope = (i/2)X5VeXe, from (3.5).

The equations of motion (3, 5) tell us that our mani-
fold has zero curvature but nonvanishing torsion. How-
ever, this is not sufficient for the space to be flat. In-
deed, both curvature and torsion are connection-depen-
dent quantities and we are free to use @ to define a co-
variant differential D in place of the full w occurring
in the Lagrangian (3.2). In this case, the torsion as-
sociated with & is zero but the curvature is not and the
X equation of motion becomes

Dy +37,0° A x =0, (3.8)
where
A% — éﬁabc)\bc,

Equation (3. 8) corresponds to a nonminimal coupling of
a vector-spinor field to conventional (torsion-free)
Einstein gravity. Before exhibiting the supersymmetry
of our action, we observe that the theory is consistent
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(no acausal propagation for x) despite the appearance of
the entire curvature tensor in (3.5). Indeed,

D =3v,F°Ax but F°=0, (3.9

Let us now show that the Lagrangian (3.2) is super-
symmetric on the manifold defined by (3.8). We take
our transformations to be

5e® =iav®y, 6y =2Da, (3.10)

where « is a spinor-valued 0-form. Under (3.10), we
find

SA=iay’x A F,+2iDa A Dx + (T° - £ iX7°x) A b,

+an exact form. (3.11)

Now,
Da A Dx =d (aDy) - 2iaD¥.
But

Dy =3v*F n X

from (2.20). Hence the first two terms in (3. 11) com-
bine to give an exact form and we are left only with a
term which vanishes when we pass to the “second-
order” formalism. We therefore conclude that the ac-
tion corresponding to {(3.2) is indeed supersymmetric
providing (3. 8) holds true.

V. INCLUSION OF A COSMOLOGICAL TERM

It has recently been shown'! in four dimensions than
one can extend supergravity to include a cosmological
term if one also adds a mass-like term for the x field.
In this section we show that a similar modification in
our action enables us to incorporate a cosmological
term. The inclusion of this term is more than an aca-
demic exercise. We show in (II) that such a term plays
a crucial role in providing a physical interpretation
for a system of self-gravitating (super) matter. The
action is

S:fe”/\ F,4-XADy-€+xnvA x= A, (4.1)

2 4

where ¥y =7,¢® is an SL(2, R) algebra-valued 1-form and
€ is defined in (2. 16). Variation yields

BA = 8% A (F, = €0+ 51X A Ygx) + (T® = 31X A ¥° A X) B,
+i6x A {Dx +3y A X)+an exact form.

The equations of motion are therefore

Fa:Ea_ Tu’

4,2
DY +3vAX=0, *.2)
T® = Lix A ¥°X. (4.3)

We observe that this modification is enough to provide
curvature, and, indeed, the inclusion of a cosmological
term for free gravity is sufficient to make that theory
nontrivial.

We take as our supersymmetry transformations the
amended form of (3.10)

de® —iay'y, Ox = 2Da+va. (4.4)

With these specific variations and using the defining
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equation for the connection (4. 3) we find, in addition to
the terms occurring (3. 11), a piece

BA=—iay'x A (€= T,) +iDarn yA X
(4.5)

The second and third terms may be re-arranged to give
an exact form plus a term involving the torsion (this
arises from transferring the D onto 7). The two terms
involving the torsion sum up to give a contribution
[upon using (4. 3}]

—iay ADY~G/2) av Ay AX.

— 50X A (XA vaX)- (4.8)

However, a Fierz re-arrangement (2. 37) shows that
this term is in fact zero and we are left with

—iaV*xX A€, = (i/2)av A v A X, 4.7
But
YA Y=YYpy€ A €°
== €ger e e
==-2V%, (4. 8)

using (2. 16), Hence, these two terms cancel and the ac-
tion (4. 1) is therefore locally supersymmetric.

We conclude by showing that the algebraic structure
of the invariances possessed by our action closes in a
field-dependent sense. In our language, an infinitesimal
coordinate transformation on a set of differential forms
corresponds to a change in the field by a diffeomor-
phism induced by a vector field. Specifically, if £ is
the vector field,

R Y (4.9)

where /[ ,¢° is the Lie derivative of e’ with respect to
the vector field £. In terms of interior multiplication
(2.24) and (2.25),

L=t det+d(E]e”). (4.10)

By re-arranging the terms in (4. 10} with the use of the
definition of torsion one obtains,

L,e®=E 1T+ D&~ € (£ _Juwf)eh.

For ordinary supergravity, the transformations (3.10)
give

4.11)

{640, Je*=D#, (4.12)
where
£ =2iay°8.

Hence, using (4.3) and the identity, valid for any two
l-forms, w and p,

tdlprd=(dplo=-(Eda)p (4.13)
we find
(6584 Je® =L ye® = (i/2)(E) X)9°x + €% (£ e, (4.14)

The first term is an infinitesimal coordinate transform-
ation, the second a field-dependent supergauge trans-
formation with parameter a’=~3f ¥, and the third

an SO(2, 1) transformation with parameter *=£§ °.

In common with the four-dimensional case, !? in order
to close the algebra on the x field it is necessary for
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the equations of motion (3. 5) to be satisfied. In this
case 6w®=0 and hence

(8566 ]x =0. (4. 15)
To be consistent with (4. 14) we require
(866 Ix =L ex = D(& 1x) +2(£S )y ,x. (4. 16)

A short calculation shows that the right-hand side of
(4.16) is £ _] Dy and hence vanishes when (3. 5) is satis-
fied. The modification in the transformations for the
cosmological case does not alter the basic structure

of (4.14), although the additional term in 8y changes the
S0(2, 1) parameter by a factor - £°. The corresponding
change for the x field comes about from the modifica-
tion of dw due not only to (4.4) but also to the ¥ equation
of motion in (4.2).
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We exhibit the complexified spin and conformally weighted functions as sections of holomorphic line
bundles over P,(C)X P,(C). As an example of a nontrivial bundle, we discuss the complex null cone in

some detail.

INTRODUCTION

In recent work on general relativity, certain weighted
scalars known as “spin and conformally weighted func-
tions” have played a prominent role, During the past
few years, in conjunction with work on complex space—
time and twistor theory, "'? it has become necessary to
consider the “complexifications” of these functions.

Qur purpose in this paper is to identify these scalars
as sections of certain line bundles and to discuss some
of their properties from this point of view.

Since the material related to the real two-sphere is
already known in another form, % we shall just review
it briefly and concentrate our attention on the holomor-
phic line bundles which appear in the discussion of com-
plex space—times. Most of the formalism for the real
case, developed in Sec. 2, carries over virtually un-
changed, although some subtle and important differences
do occur. For example, in Sec. 3, we show that the
complex null cone is actually a nontrivial C*-bundle
over its space of generators. In Sec. 4, we exhibit
complex null infinity as a nontrivial bundle and examine
its holomorphic global cross sections; these are the
“good cuts” of Newman and his coworkers. '** Each cut
is doubly ruled by the asymptotic twistors of Penrose.®
Those asymptotic twistors “not entirely on C¢” are
shown to be line bundles obtained from complex null
infinity by suitable restrictions.

1. PRELIMINARIES

We begin by reviewing two ways of constructing line
bundles (i. e., one complex-dimensional vector bundles)
over a differentiable manifold M., %¢

The first method involves patching together the trivial
bundles {U,XC} over an open cover {Ua} of M. Suppose
given, for each nonempty double intersection, a map
hag:U, N Us—C¥, where C* is the multiplicative group
of nonzero complex numbers, Provided that ki, zhgs =1y,
in any nonempty triple intersection, we can glue these
bundles together in a consistent fashion: If x= U, "1 Uy,
then the pair (x, z,) in U, XC is identified with
(x, hagl(x) zg) in Uy X C. The transition functions {/1,s}
determine the line bundle completely. A section s of
the bundle is given by a set of maps {s, : U, — C} satis-
fying s, =h,sSs in U, N Uz ; s, is called the local repre-
sentative of s in U,. The bundle is C™ provided that each
hesis C7; if M is a complex manifold and each kg, is
holomorphic, the line bundle is said to be holomorphic.
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The second construction begins with a principal bun-
dle 7 : P — M with structure group G.° Let p be a repre-
sentation of G on C. Define an equivalence relation on
PXC by (p,2)~(pg,p(g-1) 2) for all g< G, and denote
the equivalence class of (p,z) by {p, 2}. 7 The set of all
equivalence classes, B(p), is a line bundle over M
with projection 1({ p, z}) =7(p). In terms of the previous
construction, it is not difficult to verify that if P is
defined by the transition functions {r,s}, then B(p) is
defined by the transition functions

haﬁ:p(raﬂ). (l. 1)

Now suppose we are given a section s : M —~ B(p),
Let p<= P with 7(p) =x. Denote the component of s{x) in
the frame p by 3(p):

st(p)={p,3(p)}. (1.2)
This defines a complex-valued function on the principal
bundle P. Note that, for ge G, s(m(p))=1{p,¥(p)}
={pg,3(pe)}, so that

5(pg)=plgH3(p).

Conversely, any function satisfying (1. 3) gives rise to
a section of B(p); this correspondence is 1—1,

(1. 3)

To relate this alternative construction to the first
one, let {Ua} be an open cover of M such that for each
« there exists a local cross section e, : U, =P IU,.
Then each {p, z}< B{p) |U, has a unique representative
{e,,zs), and we assign to {p, z} the local coordinates
(mle,),2)c Uy XC. In Uy, N Uy, we have e, =ez7aq ,
where vg, : UyN U, — G, and the transition functions for
B(p) are given by (1.1). If s is a section of B(p), its
local representative in U, is given simply by

Sa =5{en). (1. 4)

We shall use this construction extensively in what
follows,

2. SPIN AND CONFORMALLY WIEGHTED
FUNCTIONS ON $?

Consider the principal C*-bundle 7:C? - {0}
-~ P,(C) = §* determined by 7: (£°, £*) — [£°, £!] (homo-
geneous coordinates), For any complex number w and
any integer or half-integer s, the mapping (s,w):A
—als=wx-(s*w) §5 3 representation of C* on C; using
this, we construct a line bundle B(s, w) —~ S%. By means
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of (1.3), a cross section of B(s,w) may be identified
with a function £(£°, £, &%, E") =£(t#, £*') homogeneous
of degree (w—s,w+s):

FOEAXEA) =awsXwsf(E4, E4), Ae ChL 2.1)

{Technically [cf. (1.3)], we should write the argument
of f as EAX; obviously, £4x=2xt%}

The sections of B{s,w) are called functions of spin
weight s and conformal weight w. To see that this
agrees with the usual definition, it is necessary to
introduce a particular local trivialization of the prin-~
cipal bundie:

For each 8= (8%;)e SL(2,C), define a local complex

coordinate on S% by & (([£°, £1]) =£°,/t], where &5 =p*5E5.

The domain of £, is the open set U, defined by E,ig #0.
Put Py={1+£,£,)"/? and define a local cross section
es:Us—~C {0} U, by

e = (EY/EL Py, £1/EL Py). (2.2)
If o is another element of SL(2,C), then clearly
eq=es(Es Py/EGP,) in Uy N U, (2.3)

Thus 7,,=£LP,/EL Py and using (1.1), the transition
functions for B(s, w) are given by
haﬂ: (Vaﬁ)s-w(m-s-w

_ (gé/g,ﬁ) : ( 1+¢48, ) “
TNER/E NI /E e /g

If we let ¢ %) =apB!, and note that £, =(at,+b)/(cL, +d),
this becomes

(2.4)

(ctstd\ 1+8,8, )’”
h“‘*(gﬁ’zﬁ)“<5’§s+a> (|a§8+biT+ letg+dl*

2.5)

Recalling that the local representatives {sa} of a section
of B(s,w) satisfy s, =h,,S$s, we have shown that these
are precisely the functions of spin weight s and con-
formal weight w as defined in Refs. 3, 8,

It should be noted that although these bundleg are all
different from the standpoint of representation theory, ®?
they are not all topologically distinct, In fact B(s, w)
is isomorphic to B(s, 0), for all w. One way to see this
is to observe that the defining representations (s, w)
and (s, 0) are homotopic to one another (Ref. 5, pp.
pp. 27—29), the homotopy being given simply by
{(s, tw) :¢= [0,1]}. To conclude this section, we recall
that any smooth line bundle is completely characterized
by its Chern class,® which for S is an element of
H%(S%,Z) = Z, Though we do not give the proof here, it
is not difficult to show that the Chern class of B{s,w)
is given by ~2s< Z,

3. HOLOMORPHIC BUNDLES OVER $? X §?

In dealing with complex space—times, one often en-
counters “complexified” functions of definite spin and
conformal weight, Examples include the asymptotic
shear of a complex null hypersurface and the related
“cut functions” of Newman and co-workers, +¢

Intuitively, one simply proceeds by analytic continua-
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tion: If £(¢4,E#’) is real analytic, and homogeneous of
degree (w~s,w+s) in (¢4, E4), then f(¢*,7*) is 2
holomorphic function of four complex variables, iie’fined
in an open neighborhood of the “real slice” n* =E%).
By analogy with the real case, one expects these func-
tions to correspond to sections of certain holomorphic
line bundles over the “complexification” of $%. We shall
see below that this implies a restriction on the possible
values of s and w.

To proceed rigorously, we consider the principal
C*xC* bundle 7:(C? - {0P)x(C? ~ {0}) — P4(C) x P{(C)
>~ §2x S; the mapping 7 sends the pair (£4,7%") to
([£*), [n*]). The base space should be regarded as the
projective space of complex null directions at some
fixed point in a complex space—time. We denote the
total space of the bundle by E.

Notice that the points ([£4],[n4"]) of P{{C)}*xP{(C) are
in one-to-one correspondence with the proportionality
classes of nonzero, singular 2X2 matrices [£%74'],
We shall use this identification in the following.

The only holomorphic representations of C*xC* on
C are given by (%, p) —A™u", where m and n are inte-
gers, We set s={(m—n)/2, w=- (m+n)/2; note that
w and s are either both integer or half-integer depend-
ing on whether m and » have the same or opposite
parity. Sections of the resulting bundles B(s, ) are in
one-to-one correspondence with holomorphic functions

on E satistying
FOER, un®) = xS p(g4 n?'), (3.1)

By restricting B(s, ) ~ P1(C)X P{(C) to each of the
factors of the base, one easily shows that the Chern
class of this bundle is given by (w ~ s, m +s)

c HYP,x P, Z)=ZXZ, Thus, if (s,w)# (s’,w’), the
bundles B(s,w) and B(s’, ') are topologically, and
hence analytically, inequivalent, a significant differ-
ence from the situation in the real case. Note, in par-
ticular, that none of these bundles is a product except
for B(0, 0).

Example: The complex null cone

In a real space—time, the nonzero null vectors at any
given point form a trivial R*-bundle over the 2-sphere
of real null directions; in a complex space—time, how-
ever, the analogous bundle is nontrivial. To see this,
choose and f{ix a spin frame at the point in question, so
that any nonzero null vector may be represented in the
form £4n4" #0. Of course, the same vector may be
written as 747*', where 74 =04 and ™ = a*Ip4’ | for
any o = C*, The mapping £¢*n*' —[£4n*'] exhibits the
complex null cone CN as a C*-bundle over
Pi(CYxP(C).

Now consider the C*-bundle obtained from B(0, 1) by
deleting the zero section. Recall that an element of this
bundle is an equivalence class {(¢*,7*'), z}, with z= C*
and {(¢%,n*"), 2}~ {(xe”, un™"), Azt for (A, 1) in
C*XC*, 1t is clear that the mapping {(¢4,7*), 2z}
—z-1¢4n*" is a holomorphic bundle isomorphism of
B(0,1) - {zero section} onto CN. Thus the complex null
cone is a nontrivial C*-bundle over its space of gen-
erators, This means in particular that, in contrast to
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the real case, the complex null cone has no global
cross-sections or “cuts.”!? This situation may be
remedied by adding back the zero section in an appro-
priate way, as we shall see below.

4. THE STRUCTURE OF COMPLEX NULL INFINITY

The conformal compactification of complex Minkowski
space is obtained as follows (see Ref. 13 for the anal-
ogous construction in the real case):

Define a complex metric on C® by h(y, y) = (y°)?
— ()= = (9 + (1°)%, and let A/ be the set of all
nonzero null vectors, If ye /A, so is Ay for all Ae C¥*,
and the conformal compactification C/=A//C* is a
well-defined compact complex 4-manifold in P;{C). The
space C/}f is well known to mathematicians as the
Grassmann manifold of lines in P;(C). Denote the image
of v in C/}f by its homogeneous coordinates [ y?].

Complex Minkowski space, CM?, is naturally em-
bedded in C/H, via

(") =[2",3(1+22),4(1-2°2)], z°2=2"2,. (4.1)

It is easily checked that the image of ¢ contains all
points of C//| except those for which y* +4° =0, These
exceptional points have the form [y*, v, = y“], where
9"y, =0 and not all y*=0. The complex 3-manifold
obtained from them by deleting the singular point
I={0,+1, - 1] is called complex null infinity and de-
noted by C¢. Precisely as in the real case any null
geodesic {z* +Ab*:xe C, b*b=0} in CM* has a unique
“end point” on C ¢ given by

lim [¢(* +2*)]=[b", 2 b, -z " b]. (4.2)
Ao
Changing to spinor coordinates and putting ¢ =yl

=—4%, C¢ may be represented by the submanifold of
P,(C) given by

cg={lg*n*, c]:g"n* #0, L Cly (4.3)
which exhibits C¢ as a line bundle over P{{(C)X P{(C).
The projection is given simply by 7 :[£4n* ) ¢]—~[g%n*']
and the vector space structure is defined as follows:
It 7([g40*, z]) =7 ([o47*', w]), there is a unique Ac C*
such that Ao#7* =474 we set

(o274, w] + [g2n ", ] =[E4*  w + L], (4.4)

We may now observe that the mapping {(£*,7*"), ¢}
—[£4n%°, ¢] defines a vector bundle isomorphism be-
tween 1~3(0, 1) and C¢. Thus, the difference between CN
and C ¢ is just the difference between a C*-bundle and
the naturally associated line bundle.

Using (4.2), we see that the zero section of C¢ is
just the set of “end points” of all null geodesics passing
through the point 0 in CM*, From the standpoint of I,
of course, it is the null cone at 0 which is “at infinity”,
so that C ¢ minus its zero section is just the (ordinary)
complex null cone of the point I.
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In contrast to CN, C¢ admits a four-dimensional
vector space of global sections; these are precisely
the “good cuts.” If z#4 is an arbitrary point of CM?,
and z**' is an arbitrary point of CM?, and 244" +x¢“p?’
is a null geodesic through z##', it intersects C ¢ in the
point (£47%7, z . £47%" ] [see (4.2)]. Notice that this
point depends only on the direction ((£4], (7' ]) of the
geodesic through z44', As the direction varies, we
obtain the global cross section

A3l e L I IO & (4.5)
of C¢. The section Z can be concisely represented as a
holomorphic function on E:

ZE ") =z 4 (4.6)
Conversely, any section of C defines a holomorphic
function homogeneous of degree {1,1) on E=C?- {0};
since any such function is automatically an entire func-
tion (Hartog’s theorem, Ref. 14, pp. 50ff.), it must be
a polynomial such as that in (4. 6). Thus the sections of
C4 are parametrized by the points of CM*, and form

a four-dimensional vector space, as asserted. In any
trivialization of C ¢, the local representatives u,
=Z(L,,Ms) of Z will be characterized as solutions to
the differential equation

5172=0, 4.7

We conclude with a few remarks concerning asymp-
totic twisters. At any point z*4" of CM*, the null cone
is generated by totally null two-planes (twistor sur-
faces') of the form

{224 + A i fixed #0, £*+ 0}, (4.8)
This surface intersects C¢ in the set {{£n¢", 240 £%70 1},
a projective asymptotic twistor of cat.? Clearly, each
section of C{ is ruled by asymptotic twistors. Of
course, C 4 itself is also generated by twistor surfaces.
These have the form (in the valence [}] case)
{le*n*,2]:ze C, £* fixed #0, n* # 0}, and are actually
line bundles over P{(C). They correspond to the re-
striction of € ¢ — P{(C)x P,(C) to {[£4]}x P,(C). Similar
remarks apply to the valence [?] asymptotic twistors.
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Wavefunctions of identical particles

F. J. Bloore and S. J. Swarbrick
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We present a description of the quantum mechanical states of a system of n indistinguishable particles
moving on a manifold M by C/S,- valued functions ' defined on the configuration space M"/S,. These
functions satisfy one of two homotopy conditions, which characterize the particles as bosons or fermions.
Any closed curve of M"/S, which does not intersect the diagonals can be classified as even or odd
according to whether its lifts to M" have end points in M" which are even or odd permutations of each
other. For bosons, ' must map any such closed curve which also avoids kery’ onto an even number of
basic loops of (C—{0})/S,. For fermions, {' must map such even loops of M"/S, onto an even number,
and odd loops onto an odd number, of basic loops of (C—{0})/S,.

1. INTRODUCTION

A system of n distinguishable particles all moving
on a manifold M has for its configuration space the
Cartesian product M"=MX++*xM (r times). Elements
of M" are ordered n-tuples (my, ..., m,) of points of
M. If the particles are indistinguishable all permuta-
tions of (my,...,m,) describe the same configuration,
The configuration is now the unovdered set of points
{;711, ceny m,}. The configuration space is the quotient
space M"/S,, where the permutation group S, acts on
M" by permuting the n-tuples. Observables correspond
to functions on the cotangent bundle T*(M"/S,). This
point has been made earlier, 1,2

In quantum mechanics, if the particles are bosons,
their state is conventionally described by a fully sym-
metric complex valued wavefunction ¥ defined on M".
Such a function can equally well be regarded as defined
on M"/S,. Symmetric functions on M" are in one-to-one
correspondence with functions on M"/S,,

If the particles are fermions however, the conven-
tional description of the state is by a fully antisym-
metric complex function ¢ on M"; that is, not by any
function on the configuration space but by a function on
a covering space. The order of the arguments of ¢ is
physically irrelevant but is required mathematically,
since an odd permutation of this order alters the sign
of ¢. The conventional mathematical description is thus
slightly redundant. This makes it desirable to see
whether one can formulate a description of the states
of n fermions using functions defined on the physically
significant configuration space M"/S, rather than by
functions on M" satisfying auxiliary symmetry condi-
tions. Unfortunately however, an antisymmetric func-
tion ¢ : M" — @€ does not in general determine a complex
valued function ¥’ (even modulo an overall sign) on the
quotient space M"/S,, but only a mapping from M"/S,
to ©/S;, where the nontrivial element of S, acts on €
by changing the sign. If dimM > 1, one can usually join
the points (ny, g, g, « .« . , 1) and (g, Wiy, Mgy o ooy My)
of M" by a curve ¥ on which ¢ never vanishes; the values
of ¥ at the end points of ¥ are equal except for sign.
Now the projection of this curve ¥ onto M"/S, is a
closed loop py. If we choose say

D gy ooy ) =+ 90y, Mg, Mgy oo vy my)

and fix ¢’ on the loop p¥ by continuity, then on complet-
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ing the loop we obtain a contradiction in sign at

{m1, ve., . (In the case M=1IR, the curve ¥ must
intersect the diagonal, where #=0. An antisymmetric
function ¢ :IRXIR — @ does indeed determine a complex
function ¢ on the half-space (IRXIR)/S, up to an overall
sign., The case when M is a circle is an interesting
exercise. )

Thus if we wish to describe the state of a system of
n identical fermions by means of a function on its con-
figuration space M"/S,, we are forced into using €/S,
valued functions, In the next section we derive homotopy
criteria which are necessary and sufficient for a
mapping

o 1 MM/S, — T/S,

to determine by lifting (modulo an overall sign) a sym-
metric or an antisymmetric mapping ¥ : M" — €, The
homotopy theory involved is quite straightforward and
is well explained in the first twenty five pages of
Greenberg’s book.® The mathematical literature on the
topology of configuration spaces may be traced from
the paper by McDuff. *

2. THE HOMOTOPY CRITERIA

We need two results from the elementary homotopy
theory of covering spaces, which may be found in
Chaps. 5 and 6 of Greenberg’s book.

(I) Let E be a pathwise connected topological space
and let G be a group of homeomorphisms of E which
operates properly discontinuously (any e< E has a
neighborhood V such that VN gV =0 for all g#1 in G).
Let p : E — E/G be the projection onto the orbit space.
Then the sequence

1 my(E) % 7 (E/G) ~ G —~1

is exact, i.e., G is isomorphic to the quotient group
T (E/G)/p,7,(E) of the fundamental groups.

(1) Let (e, E), (xq, X), (9o, ¥) be pathwise connected
pointed topological spaces. Let ’: (vg, ¥) = (xg, X) be
any map and let g : {e,, E) — (xy, X) be a covering space
map. Then there is a {unique) lifting ¢ : (y,, Y) — (eq, E)
of ¥’, (g9 =y') if and only if D7 (g, ¥) Cq4yleq, E).

We should like to apply these results to our situation
which may be drawn as follows:
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M2 pm/s,
2
C =¢/s,

where we are given ' and wish to construct . M is
assumed to be pathwise connected. However, neither p
nor g is a covering space map, because p is not a
homeomorphism of neighborhoods of diagonal elements
in M" and ¢ is not 2 homeomorphism of neighborhoods
of zero in €. Another way to put it is to say that S; and
S, do not act properly discontinuously on M” and €
respectively. However, if D is the set of all diagonal
elements of AM",

R
P

D={(mg,...,m,) tm;=m; for some i#j}

then S, acts properly discontinuously on M™ D, Further,
S, acts properly discontinuously on C* =C\{0}.

Let K(') CM" be the kernel of the map ¢’ <p, and
denote // = M"\{D U K(7)). We shall suppose /] is still
pathwise connected. (If it were not, we should consider
each component separately.) Then S, acts properly dis-
continuously on /|, and we consider the problem of con-
structing ¥ in the diagram of maps between pointed
sets,

@, /) 2 (o, 1/,)
vy
(Z,€*) % (2,C*/S,)
so that the diagram commutes.
The corresponding diagram of fundamental groups is
1= (M) =y (1/8,) %5, ~1
Yol o
1= (@*) e my (C*/S,) > 5, ~ 1.

Here, by (I), the rows are exact. The map u :S,—S; is
the parity map whose kernel is the group of even
permutations. We do not claim that pov=»xrcy,. The
point & is chosen arbitrarily in ///, and determines the
points @ and z. The point Z may be chosen to be either
of the two points sitting over z (and in the fermion case
will turn out to fix the sign of the wavefunction ¢). In
the lower row, m(C*)=2Z and g,m;(C*) =22 C 7,(C*/S,)
=Z. Thus ¢, simply multiplies by 2, to produce the
normal subgroup of even elements of m(€*/S,), which
in turn gets mapped to zero by A, The odd elements of
m,(C*/S,) get mapped to the nontrivial element of S,.

It follows from the lifting criterion (II} that the map
¥ exists such that g o =9" ¢ p iff(’ © p)y 11 (M) C g,y (T*),
i.e., iffacylcp, =0, i.e., iff)’c p maps all loops in
M to even loops in €*/S,. For such a §’ there are two
cases to consider,

(i) Bose. IffA-y, =0, i.e., iffy’ maps ali loops in
/M/S, to even loops in ©*/S,, then ¥’ itself lifts to a
map ¥ : (o, H/S,) — (Z,C*), and the map y=Jcp is a
fully symmetric complex valued function defined on
M. We may extend ¢ to the whole of M" by continuity,
(Note that in this case Ac P, =0 but L c v#0 so the
diagram of fundamental groups does not commute in the
right-hand square.)
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(ii) Fermi, If Ao g} op, =0 but Ac P, #0, then Ao
must map onto S,. Then no map P :M/S, ~C* exists
that go h =3, but there still exists a map ¢ /) —C*
such that go ¥ =9’ c p. We seek the further condition
on ¥’ that ¥ should be antisymmetric.

Consider a closed loop { in /#/S, through «. It has a
unique lift f:p’il through @ in /#, which will be a (gen:
erally open) curve joining & to a point B with p(&) =p(B3)
=0, Writing & =(a,,...,9,), B={8,...,B,) we have
that o; =8, , where s:(1,...,1n)+(s4,...,s,) is the
element of the permutation group S, which labels the
coset in m;(//S,) containing the homotopy class [!] of ,

s=v(lz).

It is convenient now to use multiplication as the group
operation in S, and to label the elements of S; as e=+1,
Let uo v((I])=e. Then the permutation s : & ~ 3 has
parity ¢ and if § is antisymmetric then y(a)=ey(B). So
#(I) is an open or closed curve in €* depending on
whether e=-1 or e=+1, and correspondingly [¢¥7 | is
odd or even, i.e., A[gyl]=¢. Thus

Mgul 1=n o v{(i]y = o v((pI].
But god=d'cp, so
Ae'p@)]=p e [p@)],
i.e.,
Ae dh(l]=p e fl].

Hence a necessary (and evidently sufficient) condition
for there to exist an antisymmetric lift ¢ of ¥’ is that
Aol =pow, i,e,, that the right-hand square commutes
in the diagram of fundamental groups,

We conclude with some remarks about the principle
of superposition of states. This requires that pure
states be in (1, 1) correspondence with one-dimensional
subspaces (rays) of a Hilbert space. The functions
¥’ :M"/S,—~€/S, which satisfy the Bose (Fermi) homo-
topy condition do not form a linear space, since €/S,
is not a linear space. What we have shown above is that
each of these functions ¥’ determines a ray in the
Hilbert space //s (#4) of symmetric (antisymmetric)
complex-valued functions on the covering space M".
Two functions ' differing by a constant phase factor
determine the same ray. Thus we have established a
(1,1) correspondence between the rays of 4/ (#,) and
the equivalence classes of €/S,-valued functions
modulo overall phase defined on the configuration space
M"/S, which satisfy the Bose (Fermi) homotopy
condition.

ACKNOWLEDGMENTS

We thank many colleagues, particularly Dr. H.
Morton, for instruction. S.J. Swarbrick thanks the
Science Research Council for a studentship.

IM.G.J. Laidlaw and C.M. DeWitt, Phys, Rev, D 3, 1375
(1971),

2J.-M. Souriau, Ann, Inst, Henri Poincaré Ser. A 6, 311
1967).

3M.J. Greenberg, Lectures on Algebraic Topology
(Benjamin, New York, 1967),

‘D, McDuff, Topology 14, 91 (1975),

F.J. Bloore and S.J. Swarbrick 879



Geometry of motion of a single elastic body point
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A four-dimensional space LX, in which body point X of a simple elastic body describes a geodesic line
during the process of deformation, is constructed. It is shown that LX is a torsion-free non-Riemannian
space. The structure of L is examined for universal dynamical solutions for incompressible elastic bodies.

1. INTRODUCTION

Use of the concepts of differential geometry in classi-
cal mechanics has theoretical as well as pragmatic
value. On one hand the results obtained from the geo-
metrical considerations give deep insight into the mo-
tion of the system by revealing some of the intrinsic
properties that the trajectory of the system has, while
on the other hand they could be used for the solution of
concrete problems. Stability analysis' based on the
Synge’s theory of perturbances? is just one example of
the practical use, in mechanics, of the results obtained
by the differential geometry methods.

The aim of this paper is to study motion of a single
elastic body point along the lines of Refs. 3—5. Motion
of an elastic body point® can be analyzed in four-dimen-
sional (three spatial coordinates and time) space E,
called Newtonian space—time. To each body point X
there corresponds a smooth curve X in E, called world
line, such that during the process of deformation a
point in E that corresponds to X “moves” along 17, Our
objective is to construct a four-dimensional space X,
such that the curve in L* that the point X describes du-
ring the process of deformation is a geodesic line. The
probiem of finding LT with the properties just stated is
what is usually called geometrization of motion.

In Sec. 2 we will determine connection coefficients
of the space L% and discuss some of the properties of
the present approach to the motion of an _elastic body
point, while in Sec. 3 the structure of L* will be ex-
amined for a class of motions called universal dynam-
ical solutions for incompressible elastic bodies.

2. GEOMETRY OF MOTION OF A SINGLE BODY
POINT

Suppose A, is the initial configuration of a simple
elastic body 3. We denote by d, basis vectors of the
coordinate system in /4, by {2} Christoffel symbols
based on the metric tensor g,,=d, *d,, and by X* co-
ordinates of a body point X in the configuration #/,. By
H we denote configuration of 3 at the time instant ¢, by
e, basis vectors of the coordinate system in // by {m" o
Christoffel symbols based on the metric g,,=¢,e,, and
by a* coordinates of a body point X in /. Equations of
motion could be written’

A BIx™ et ay + PR, = PRa,, 2.1)

where ¢, is the density of the resultant force due to
inhomogenity per unit volume in #,, and is given via
constutive equation H,* for the Piola—Kirchhoff stress
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tensor as

4= a;;:: (2.2)
and

Ale B =3[A 8448 o] 2.3)
where

A B_ oH® 2.4)

R m apna’

Fmo=x™, p=9x"/3X". Also, in (2.1) p, represents the

density of 8 in #,,
m o
+{s r}x"'ax',s—{a ﬁ}x v (2.5)

is the total covariant derivative of x™ , and

_ & o ko dxs dx”
ak—d_tzxk(X’t)+{sr}dt dt

9%x™

xm.a?B: axaaxﬁ

(2.6)

is acceleration of the particle X. Denoting by R the
vector
Rk:[Ah(amB)xm'a;e+qk];1_ + b*, 2.7
R

Eq. (2.1) can be written as

e E |dx® dx"
Ez"x(x’tH{sr}dt dt

In (2.8) R* is a function of X*, F™;, and /.

=R, X*cH,, t=0.
(2.8)

In four-dimensional space L‘e, we wish to construct
an equation of the geodesic line which must be identical
to (2.8) for a fixed particle, i.e., fixed X*, To char-
acterize LY we first define its metric By, R, v=1,2,3,4
In analogy with the geometrization of motion of rheo-
nomic systems of classical mechanics®* we take

zmngmzv m,l1=1,2,3,

z@mzlx 24"‘:?,"4:0, m:1)253:4- (2-9)

Denoting by ¥, m =1,2,3,4 the coordinates of a point

in Lf, differential equations of a geodesic line are
Fxm | =, dxt dx*

0, m,i,k=1,2,3,4,

ol 2,10
ds® 'k ds ds ( )

where s is a parameter and f;"h are connection coeffi-
cients, to be determined. Equations (2.10) must be
identical to the equations (2.8) which with »' =%,
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=%, x*=%°, t=x* become
k }d?’ a7 =R,

&£ k,s,r=1,2,3.
AE X sl & aF

(2.11)

Following® 5 we set

™m _ m 1 s m =
r""_{r k} %2 (azn/ds)(dx,/ds) ZuR" om,7,k=1,2,3

R'=T,=T7,=0, »,k=1,2,3,4. (2.12)

Then we have:

Thegrem: During the process of deformation, body
point X of a simple elastic body 4 describes in four-
dimensional space L% with the metric tensor (2.9) and
connection coefficients (2.12) a geodesic line.

Pyoof: Putting m =4 in (2.10) and using (2.12), we
get

=4
fsxz =0 (2.13)
s0 that ¥*=a-s +b, a=const, b=const. Choose a=1,

b=0. Then, Eq. (2.10) becomes

&z
d@)?

=n dX7 dx*

rk W a—x—;:O, m,r,k=1,2,3.

(2.14)

Direct substitution of (2.12), into (2.14) gives (2.11)
and hence proves the theorem.

In using the theorem just stated to construct space
L* we will distinguish two special cases that correspond
to two special problems of the elasticity theory.

Case 1. The stress field H,*(X?,¢) is a prescribed
function of the coordinates X* and time {, and we want
to find the motion x*(X%,¢) of a fixed particle X. Then,
the first two terms on the left-hand side of Eq. (2.1)
are known function of X* and ¢ (since they represent
the divergence of the known tensor field Hk“). Therefore
the vector R* defined by Eq. (2.8) becomes a known
function of ¢ for fixed X (i.e., fixed particle X). In
this case the connection coefficients (2.12) are functions
of x* (,=1,2,3,4 and dx*/ds (¢=1,2,3) only. The space
with such connections belongs to the class of genera-
lized affine geodesic spaces of Yano.®

Case 2. Stress field Hk“(XB, f) is not known in advance
and must be determined together with the motion
x%(X*,t). In this case the vector R* is a function of
¥ (k=1,2,3,4), dx*/ds(k=1,2,3), F"_, and F"_,,.

For fixed X*, F=, and F™ ., remain unknown functions
in the expressions for the connection coefficients. They
represent the influence of the motion of the neighboring
particles on the path of X. Thus Eqs. (2.9) and (2.12)
define a family of spaces. In such a case we can not talk
about a geodesic line, in its usual meaning. The geo-
metry becomes fixed and L% becomes the generalized
affine geodesic space of Yano in the case when F™ .,
=0, so that R* again depends on x*(k=1, 2, 3,4) and
dz/ds(k=1,2,3) only.

The connection coefficients (2.12) are singular for
the points where X is in the state of instantaneous rest,
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(2.15)

Such singularity of the connection coefficients occurs in
other types of geometrization of motion too. (For ex-
ample in Ref. 9, p. 139 it occurs in the context of
Riemannian geometry.) We exclude points where (2.15)
holds from analysis.

For fixed X* Eqs. (2.8) have the same form as the
equations of motion of nonconservative dynamical sys-
tems, R* being the nonconservative force. A geome-
trization of such systems, under the assumption that R*
is a function of generalized coordinates only, is given
in Ref. 5. Thus our results could be interpreted, in the
context of classical particle mechanics, as geometriza-
tion of motion of nonconservative dynamical systems
with nonconservative forces dependent on time and gen-
eralized coordinates.

From (2.12) we find that
I'"" =Tm

e (2.16)
so that L¥ is torsion free space. To examine its met-

rical properties we compute the covariant derivative of
the metric tensor g, with respect to the connection co-

efficients (2.12). The result is

< dx" dx,
mglk o s

Therefore, the space L% is not a metric space. The
curvature tensors for the generalized affine geodesic
spaces are defined by®

) A 2.17)

R tmk =(an1——: - F;arrr: l) (amf’;n r:narr‘? n)
+T* Tr -T* T, (2.18)
and
T,.r=0,%,, (2.19)
where
_al) sy 30 .= dx!
k() =2, a"()_a(dx,,/ds) , Th=T7, ="
(2.20)
An easy calculation shows that in our case
dxm  dx, \"? dx
T .k __ = Iim 5 Rk
e —2<m=1 ds ds > ds Sl @.21)
Note that both R ; * and T, * depend on R*. This is

an important property of the present formulation of the
equations of motion of an elastic body point, since in-
formations about the path of the particle could be ob-
tained solely from the informations about the stress
state of the body 4. This may be particularly important
in the case of stress controlled motions of an elastic
body, in which certain restrictions on the stress state
are imposed. Then Egs. (2.18) and (2.21) determine
the restrictions on the path of X in L¥.

The space LX coincides with the space E if R# =0,
It follows from (2.7) that for initially homogeneous
bodies in the absence of body forces, R* =0 if the total
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covariant derivative of the deformation gradient van-
ishes during the motion.

3. GEOMETRY OF MOTION OF A CLASS OF
DYNAMIC UNIVERSAL SOLUTIONS FOR
INCOMPRESSIBLE ELASTIC BODIES

A motion x*=y*(X*%,t) is a dynamic universal solu-
tion® for incompressible simple elastic body, if and only
if, the acceleration g, is a lamellar field with a single
valued, possibly time dependent, potential'®

k(R0 _
== 4 k=1,2,3. 8.1

From (2.8) we find that
Re=25 gor p—1,2,3. (3.2)

axt
Consider a class of dynamic universal solutions, for

which the acceleration potential ¢ does not depend ex-
plicitly on time, i.e., £=£(*). Then writing

A, d

= AT ('):d_z‘(o)’ (3.3)
in (3.1), multiplying by dx™, and adding, we get a
Bernoullian type!! of expression
i—;-;}ka%kzi(xk)+c,C= const, (3.4)
k=1

Using (3.4) we can formulate the following proposition.

Pyoposition: In a motion for which (3.4) holds each
body point X moves along a geodesic line in a linearly
connected space L¥ with the metric (2.9) and the con-
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nection coefficients
'm m __1— moy
P”‘_{r k} AE+C) 8w

,f‘;"k:'f:?:k:,f;"‘lzoi m’k:17213;4y

m,r,k=1,2,3, (3.5)

(3.6)

where £ =(9%/0x%)gm*. Note thatin (3.5) 'T), are
functions of X*, ¥*, and ¥° only, so that the structure of
'L* ig simpler than that of L¥, However ’'LX still is not
a metric space.
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Variational interpolation
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In a recent article in this journal [E. T. Cheng and R. W. Conn, J. Math. Phys. 17, 683 (1976)], a
variational procedure was outlined to interpolate among known values of a functional of the solutions to
inhomogeneous linear equations. In this paper, an alternate variational interpolation procedure for
inhomogeneous equations is given. This alternate procedure utilizes the same data as the original method,
but yields more accurate results. The same formalism can be applied to homogeneous equations, giving an
interpolation procedure for homogeneous functionals such as eigenvalues. This refutes the conjecture of the
earlier paper that a variational interpolation scheme for eigenvalues may not be possible.

I. INTRODUCTION

Cheng and Conn! (hereafter referred to as CC) have
recently proposed a variational procedure to inter-
polate among known values of a functional of the solu-
tions to inhomogeneous linear equations. To summarize
the introduction to their paper, let ¥ satisfy the inhomo-~
geneous equation

where L is an arbitrary linear operator (the linear
Boltzmann operator in the neutron transport example
of CC), ¢ is the dependent variable, and S is a known
inhomogeneous term. Suppose one is interested not

in ¢ itself, but is content with knowing the inner pro-
duct (S*,y), an arbitrary linear functional of the solu-
tion. (S* is a known, arbitrary, function,) Two widely
used variational principles to estimate linear func-
tionals are those due to Roussopoulos? and Schwinger, ®
given by

FR[(I)’ d)*]:(S*) ¢)+(Sy (b*)-((b*sl‘d)); <2)
and

F [0, ¢*]=(S*, ¢)(S, $*)/(d*, L), (3)

where ¢ is an estimate (trial function) of ¥, and
similarly ¢* is an estimate of the adjoint solution
satisfying the adjoint equation

L*y*=8*, (4)

The well known utility of Eqs, (2) and (3) is that first
order errors in the trial functions ¢ and ¢* lead to
values of F, and F; which differ in second order from
the functional of interest (S*, ). It should be noted that
the Schwinger functional can be derived from the
Roussopoulos functional by using trial functions which
are the product of an amplitude and a shape function,
and demanding that the resulting functional be stationary
with respect to the amplitude factors. * Thus the
Schwinger functional is homogeneous in the trial func-
tions ¢ and ¢*, as can be seen from Eq. (3), whereas
the Roussopoulos functional, Eq. (2), is not. Since the
Schwinger functional results from the optimization of
the Roussopoulos functional over amplitudes, one would
in general expect the Schwinger functional to be more
accurate. Experience with these functionals bears this
out in practice.
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Cheng and Conn considered the problem where the
operator L and/or the direct and adjoint inhomogeneous
terms S and S* depend in a known way on a set of
parameters «. If @ =, corresponds to a reference
case for which exact solutions ¥, and ¥ are known,
then either the Roussopoulos or the Schwinger func-
tional can be used, with ¢, and ¢} as trial functions,
to estimate (to second order) the effect of changing o
on the functional of interest (S*, ¢). These authors
noted, however, that the perturbation embedded in o
is often large (thus negating the second order charac-
teristic of the usual variational principles), or that
more than one reference case is appropriate. They
developed a formalism based on variational techniques
that allows one to interpolate between these known re-
ference cases. In particular, for linear functionals of
the solution to an inhomogeneous equation, their techni-
que allows interpolation among an arbitrary number of
reference points.

In this note, our intent is threefold. (1) for inhomo-
geneous equations we present an alternate formulation
of varijational interpolation of linear functionals which
uses the same reference data and is more accurate;
(2) we present an N-point interpolation scheme for
eigenvalues (such a scheme eluded Cheng and Conn);
and (3) we point out that while variational interpolation
is very elegant, there are simpler and more straight-
forward approaches that may be just as accurate in
certain instances. Following a brief review of the CC
method, we present our alternate formulation for in-
homogeneous equations and give a simple numerical
example comparing the two methods. We then give the
straightforward extension of our method to the eigen-
value problem, and conclude with a short discussion of
the utility of variational interpolation methods,

Il. REVIEW OF THE CHENG-CONN PROCEDURE
FOR INHOMOGENEOUS EQUATIONS

Cheng and Conn pointed out that in using the Rousso-
poulos or Schwinger functional, the trial functions for
¥ and ¢* need not correspond to the same reference
system. Let the equations of interest be

L{a)y=5(a), (5)
L*(a)Y* =S*(a), (6)

where a represents the known perturbation in the
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operator L and the inhomogeneous terms S and S*.
Equation (6) corresponds to the functional of interest
(S*,¥). If @, and ¢, characterize two reference sys-
tems between which we wish to interpolate, we choose
as trial functions #, and ¥} which satisfy

Lo, =S(ay), (M
L*(a, W5 =5*(a,). (8)

It is easily shown that, with these trial functions, both
the Roussopoulos and Schwinger functionals lead to
exact results for (S*,y) when ¢ =, or a =«,. For
any other value of «, these functionals provide an
estimate of (S*, ¥), the error in which is second order
in the error in the trial functions.

Cheng and Conn then went further and considered
the case of interpolation between an arbitrary number
of reference systems. As in their paper, we illustrate
their method for the case of three reference systems.
Let §, and ¢, be exact solutions of the direct equation
corresponding to parameters ¢, and a,, and let ¢¥
be an exact solution to the adjoint equation when o =a,.
The CC procedure is to use in the Roussopoulos func-
tional the trial functions

ola) =11 - ale)]y, + ala)d,, 9
¢*(a)=b(alf, (10)

and demand that the resulting functional be stationary
with respect to a(a) and b(a). Having determined a(a)
and b(a), Egs. (9) and (10) are once again used in the
Roussopoulos functional. The result is

FCC:{(S*y Z1)1)( ;’Ld)z)"(S*) wz)(w;;L¢1) (11)
+ (S, UL, 9) = (8%, v/ 105, L¥s)
- ( ;v Ldﬁ\)],

which is easily shown to give an exact value for (S*, )

when @ =a,, a,, OF &, The generalization of Eq. (11)
to an arbitrary number of reference systems was given
by CC.

Equation (11) has characteristics of both the Schwinger

and Roussopoulos functionals. It is homogeneous in the
reference function ¥ (as in characteristic of the
Schwinger functional), but depends upon the overall
amplitude of the reference functions ¢, and ¥, (as is
characteristic of the Roussopoulos functional). The rea-
son for this hybrid character of the CC functional is
easily traced back to the form of the trial functions,
Egs. {9) and (10). Any change in the overall amplitude
of ¥* can be compensated for by a change in the coef-
ficient b(a). A change in the amplitude of #; or i,
however, cannot be compensated for by changing a(a).
That is, the amplitude of ¥ has been variationally
optimized, but this is not true for the amplitudes of

#, and ,. We pointed out earlier that the Schwinger
functional results from the Roussopoulos functional by
optimizing the overall amplitude of the trial functions.
The CC method is a partial extension of this procedure
in which a portion of the amplitudes are optimized;
i.,e., a full optimization with three reference functions
would require three adjustable coefficients rather than
just the two a(a) and b(a). A seemingly more straight-
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forward procedure would be a full extension of the der-
ivation of the Schwinger result from the Roussopoulos
result; namely, let all of the amplitudes of the refer-
ence states (trial functions) in the Roussopoulos func-
tional be variationally optimized. The result will be

a functional homogeneous in all trial functions, i.e.,
entirely of the Schwinger type. Not only will this re-
sult be of a more symmetric form, but it should be
more accurate than the CC result since more param-
eters are being variationally optimized. At the same
time, it is no more complex than the CC method in
the sense that the same number of reference systems
is being used.

Il. FORMULATION FOR INHOMOGENEOUS
EQUATIONS

The formulation is entirely straightforward. We as-
sume 2N distinct reference systems and take as trial
functions

N
blo) =2 a (e, (12)
o*(a)=3. b,(a)iF, (13)

i=N+1

where the ¢, and ¥} satisfy
L(ai)d)i:S(ai)l Nv (14)
L*a)r=S*a,), i=N+1, ..., 2N. (15)

i=1, ...,

Use of Eqs. (12) and (13) in the Roussopoulos func-
tional, Eq. (2), yields, demanding that the reduced
functional be stationary with respect to variations in
a;(a) and b,(a),

£ )Gt L) = (4t s, 16
i=N+1, ..., 2N,

é’” bila) (i, L*a@)f)=@;, S*@)), (17)
i=1, ..., N.

*

These equations are to be solved for the a; and b;, and
by Cramer’s rule such solutions are just the ratio of
two determinants. Using these solutions in Eqs. (12)
and (13), and using these trial functions in the Rous-
sopoulos functional gives a functional which is homo-
geneous with respect to all the functions @, and ¢f; i.e.,
it is entirely of the Schwinger type. It is easily shown
that this functional gives an exact result for (S*, )
when @ =q;, i.e., in the reference cases. For any
other value of @, this functional can be considered as

a variational interpolation between the reference cases.

If we denote this functional by F,,[¢, ¢*; al, we have
for N=1

we g 55 0, 8
Fol9, 0% o)==t pos=s, (18)
which is just the Schwinger functional with different
reference states for the direct trial function ¢ and
the adjoint trial function ¢*. Equation (18) was first
proposed, and used, by Cheng and Conn. The case
N =2 is more interesting. We have
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F.= (S*! ¢L)[(Sy d’;)(w:, sz) - (S’ Zp:)(d):’ Lll)z)]

4 (d)g‘,Lwl)(lb"f’Lle)'(ll);,Lle)(lP:,LlPl) (19)

L% IS, D @E, L) = (S, H@f, L)l
(QD;‘, LlPl)(cbf{; sz) - (d’;’ L‘J)Z)((IJ:) Lil)l)

We see this functional is homogeneous and symmetric
with respect to all four reference functions y,, ¥,,

P¥, and ¥¥. This is to be contrasted with the corre-
sponding CC result which does not enjoy this property.
As remarked earlier, the CC method can be considered
as a hybrid, somewhere between a Roussopoulos type
functional and a Schwinger type functional. Equation (19)
gives exact results for (S*, ¢) when e =a,, a,, o, or
a,, and gives second order errors for any other value
of a.

Before giving an example comparing the present
method with the CC procedure, it should be remarked
that it is necessary in our scheme to have an equal
number of direct and adjoint reference functions. If
this is not the case, the reduced functional will not
have a solution for the a; and b;. In the case of an even
number of reference systems, one merely needs to use,
or compute, the same number of direct solutions as
adjoint solutions. However, what is the procedure to
interpolate between an odd number of reference sys-
temas, say 2N — 1? The suggestion is to use N direct
solutions, N -1 adjoint solutions, and an additional
nonreference adjoint trial function which is arbitrary.
(Although this function is arbitrary, better results will
be obtained if care is taken to make this function a
reasonable one.) The resulting functional F,, will
successfully interpolate between 2N - 1 reference sys-
tems, To make these points clearer, we shall consider
the case of an odd number of reference systems in an
illustrative example.

IV. AN ILLUSTRATIVE EXAMPLE
We consider the following equation

d*y(x)

- +a%P(x)=1, -1lsxs<l, (20)
with boundary conditions
(=1 =y(1)=0, (21)

and assume we are interested in the quantity

2 o1 2
Pz%/ dx a0 =% (5%, 0), (22)
-1
where we have defined $*(x)=1. Since S=S%*, and the
operator of Eq. (20) is self-adjoint, the entire problem
is self-adjoint and we have y*(x)=y(x). We use the
variational procedure of the last section to estimate
(S*, ¥), and hence P, and compare the results with the
CC procedure applied to the same problem. Physically,
Eq. (20) corresponds to a simple neutron diffusion
description of an infinite slab problem of thickness
two, with length measured in units such that the dif-
fusion coefficient is unity. The absorption cross sec-
tion is given by a?, and the inhomogeneous term repre-
sents a neutron source which is independent of position.
The source neutrons can either be absorbed in the slab,
or leak through the faces, and the quantity P defined by
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Eq. (22) is the probability of absorption. The exact
solution to this problem is

wry 1 cosh(ax)
o= )= [1- ol | (23)
and thus

P=1 -;1 tanh(a). (24)

The variational estimates will be compared to Eq. (24).

We assume three reference states, corresponding
to @ =0, 1, and ». Thus we set

Dy (x)=3(1 = x?), (25)
cosh(x)

d)z(x):l—m, (26)

P¥(x) :ggw(x)o 27

Thus both the CC method and the present procedure
will give exact results for the absorption probability
for « =0, 1, and «. These three reference states can
immediately be used in Eq, (11) to obtain the CC result
for this problem. As discussed in the last section,
however, the present scheme requires a second adjoint
trial function., This simplest choice of a function which
satisfies the boundary conditions might be the Dirac
delta function

()= 0(x). (28)

Equations (25)—(28) can now be used in Eq. (19) to ob-
tain an estimate of (1, ¢), and hence P, for any o. A
better choice for ¢ (x) would probably be

Prxy=1-24, (29)

since it not only satisfies the boundary conditions,

but has the general shape of the exact solution. Equa-
tion (29), together with Eqs. (25)—(27), can then be
used in Eq. (19) to obtain another variational estimate
of P, the capture probability, Based upon the argu-
ments of the last section, one would expect the results
using either Eq. (28) or Eq. (29) to be superior to the
CC result, with the Eq. (29) result being the best.

This a priovi ranking is confirmed by the numerical
results. For any value of o, Eq. (29) gives the best
results, Eq. (28) second best, and the CC result is
least accurate, Figure 1 shows these numerical re-
sults for o > 1, The error plotted in this figure is
defined as

error:—"—s——M'P ast = Papprog| . (30)

exact
We note that the Eq. (29) result has a local dip in the
error in the vicinity of @ =5. This is because the fourth
trial function, Eq. (29), is actually a fairly good re-
presentation of the exact solution for this value of «.
This points out the utility of taking some care in
choosing the arbitrary fourth function i (x).

V. FORMULATION FOR EIGENVALUES

The Rayleigh quotient is a homogeneous functional
which is widely used to estimate eigenvalues. Cheng
and Conn pointed out that by using different reference
states for the direct and adjoint trial functions, one can
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use the Rayleigh quotient to interpolate between the
known eigenvalues of two reference states. However,
they were unable, and conjectured that it may be im-
possible, to find a variational interpolation scheme
involving more than two reference states. Using the
same methods as we have employed for inhomogeneous
equations, we find it is possible to construct an inter-
polation scheme for eigenvalues involving an arbitrary
number of reference states.

We consider the eigenvalue equation
L(a)= AF(a)y, (31)

and the corresponding adjoint equation
L*(a)y* = AF*(a)y*, (32)

where A is the eigenvalue and L and F are linear op-
erators, (For notational simplicity, we do not employ
an index to distinguish the various modes.) The
Roussopoulos functional for these equations is

F[d)y ¢*,X]=(¢*,L¢—KF¢)), (33)

where ¢ and ¢* are trial functions for ¥ and ¢*, and
A is a trial scalar for the eigenvalue A.° The procedure
is to use trial functions of the form

¢(a>=‘i ay(@)t, (34)
2N
eH@)=2s byle)}, (35)

where, just as in the inhomogeneous case, ¥, and ¢}
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1000

represent exact solutions for the ith reference state.
These trial functions are used in Eq. (33) and the re-
sulting functional rendered stationary with respect to
independent and arbitrary variations in the a,;(a) and
b,(a). The result is the set of inhomogeneous equations

N
2, a()WF, L)) =23 a,(a)wr, Fla),), (36)

=1

i=N+1, ..., 2N,

8 b (@), LM =23 b (@), L*(@)eD),  (37)

j=N+1 J=N+1
1= 1, ey N,

Equation (36) represents N homogeneous equations for
the a,(a). For these equations to have a nontrivial
solution, the coefficient determinant must vanish,
i.e.,

(lp;u, Ldﬁ_}‘le) tet (w;u’ LwN_)\F‘L'N)
. . =0, (38)

(ZV;N, Lwl _)\Fd)l) (lp;]vy LwN - >\FI»DN)

The same statement holds true for the N equations
given by Eq. (37), and this leads again to the deter-
minant given by Eq. (38). Equation (38), when solved
for A, is the extension of the Rayleigh quotient to an
arbitrary number of reference systems. It is clear
from Eq. (38) that one obtains the exact solution,
A=A, whena=0a,, &, ...., OT a,y, and it is easily
shown that Eq. (38) estimates A with second order
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errors for any other value of @. The usual Rayleigh
quotient is recovered when N=1. In this case, the
determinant has only one element and we find, solving
for 1,

_(g, L)
(&5, Fiy)
This is the usual Rayleigh quotient involving two dif-
ferent reference states, as suggested by Cheng and
Conn. For N=2 we have

[, Lay) = x(@x, F)I[(@F, Li,) - M@k, Fi,)]
=[(%, Lg,) = (@F, Fy)(@F, Ly,) - 2@, F)],

which is a quadratic in A. One solution for A corre-
sponds to the interpolation for the mode of interest
between the reference states «,, a,, a,, and a,, where-
as the second solution is a (probably crude) estimate

of an eigenvalue corresponding to another mode.

(39)

(40)

VI. CONCLUDING REMARKS

In this paper we have shown that the original idea
of Cheng and Conn to use variational methods to inter-
polate between known reference states can be extended.
For linear functionals of the solution to inhomogeneous
equations, this extension amounted to an alternate way
of using the reference states which, because it allowed
more freedom in combining these states, led to more
accurate results. For eigenvalues, the extension was
made to more than two reference states. The formalism
employed as the starting point was the well-known
Roussopoulos functional, using trial functions whose
components are the product of shape functions (the re-
ference solutions) and amplitude factors. The ampli-
tude factors are variationally optimized to achieve the
mixing, or interpolation, of the reference solutions.
Although this paper, as well as the paper of Cheng
and Conn, dealt specifically with linear functionals
for inhomogeneous equations and eigenvalues for homo-
geneous equations, the same formalism could be used
to develop variational interpolation formulas for arbi-
trary functionals of interest for both inhomogeneous and
homogeneous equations. One would use the same type
of trial functions, but start with, rather than the
Roussopoulos functional, the generalization of the
Roussopoulos functional appropriate to the functional
of interest. This generalization of the Roussopoulos
functional for estimating an arbitrary functional has
previously been reported for both homogeneous® and
inhomogeneous® equations.

Two other concluding comments seem in order.
First, we remarked earlier that the present extension
of the CC method for inhomogeneous equations is more
accurate, but no more complex, than the original CC
method. This assertion concerning complexity is true
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in the sense that in both instances the same reference
states are involved, and in most problems it is the
generation of the reference solutions that constitutes
most of the complexity. However, once the reference
solutions are known, clearly our method is algebraical-
ly more complex than the CC method because it in-
volves the calculation of more coefficients a,(«) and
b;(a). It is just this fact that more coefficients are
used, which means more flexibility for the variational
method to interpolate, that leads to the increased
accuracy.

Finally, the two characteristics of any variational
interpolation scheme that make it attractive are:
(i) interpolation is possible between an arbitrary num-
ber of reference states; and (ii) errors are second
order in the inaccuracies of the trial functions. The
first characteristic is shared by most interpolation
schemes, e.g., fitting N+ 1 points with an Nth order
polynomial, Further, if the perturbation embedded
in o is large (if the reference states are far apart),
then the fact that the errors in variational interpolation
are of second order is of no particular a priori ad-
vantage. Second order errors may be as large, or
larger, than first order errors. This observation leads
to the second comment., For large perturbations, varia-
tional interpolation, while mathematically appealing,
may be no more accurate than a simpler method such
as a polynomial, or other functional form, fit. Ac-
cordingly, one should consider the variational inter-
polation schemes discussed in this paper as a technique
to complement, but not necessarily replace, other
interpolation schemes.
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The problem of finding the exact propagator for a given quadratic Hamiltonian is presented as an initial-
value problem — a form suitable for both analytic and numerical computation. We illustrate the method
by finding the propagator for (a) the Hamiltonian with constant coefficients and (b) and (c) Hamiltonians

associated with damped harmonic motion.

1. INTRODUCTION

It is well known that the problem of finding the exact
propagator for a given quadratic Hamiltonian can
essentially be solved. Perhaps the most natural
approach to the subject is provided by the path-integral
method. By expanding all possible paths around the
classical path connecting the points (x,,¢,) and (x,, £,),
Feynman was able to show that the propagator in this
case factors out into

i
K(%5, 55 %0, 8,) =F(t, —t,) » exp ﬁscl(xz,tzgxl, t)

where S.(x,,%,;x,,¢,) is the classical action, calculated
along the classical path, and F is a modulating factor
depending on the time interval alone.' Thus, in order to
calculate the propagator K, one first has to solve the
classical equation of motion subject to the boundary con-
dition that the particle goes through the endpoints at the
specified times, then calculate S, =[;?L{x,%,()dt, and,
finally, devise a method to determine the modulating
factor F. In the unfortunate case, when the classical
equation of motion does not lend itself to analytic solu-
tion, one may be confronted with a formidable numeri-
cal problem.

In this paper, we show how to formulate the problem
of finding K as an initial-value problem, suitable for
both analytic and numerical computation. In particular,
the modulating factor F is completely determined. We
shall illustrate our method by solving three cases, two
of which pertain to damped harmonic motion—a subject
of some recent interest.?

2. INITIAL VALUE FORMULATION

In this section we shall work in one dimension. An
example in two dimensions is worked out in the next
section. Given the Hamiltonian
H(x, p, ) =ao+ ax+ a8+ ap+a,p> + axp + alpx,

where, in general o, = «,(t), we are asked to solve the
Schrodinger equation

2This work is supported in part through funds provided by
ERDA under Contract EY-~76-C-02-3069. *000,

b Address as of August 1977, Racah Institute of Physics, The
Hebrew University of Jerusalem, Jerusalem, Israel,
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subject to the initial condition

K(x,t;x',0), ~, 6(x =x').

t=0* (lb)
In what follows we shall shorten the notation by sup-
pressing the explicit dependence on x’. Thus, for exam-
ple, K(x,¢;x’,0)=K(x,#). We shall seek a solution of the

form

K(x,t)=F{¢) - exp(%S(x, t)) . (2)

Substituting this expression in Eq. (1), we obtain
F 728 3S as

in = + +a¥) =—=——+H (¥, — .

zh’(F Uy oz5> 3 H(\', Fy ,/> 3)
We now try the following ansatz,

aS 38

-+ — =

a7 H(x, P ,/> 0, (4)
with

S(x, B =alt) + b(t)x + c(t)x?, (5)
and

F 2%s

F+d4—§F+d:=0. (6)

The Hamilton—Jacobi equation yields

a+agt+ah+abi=0, (7a)
b+a,+(a,+aX)b+2a,c +4abc=0, (7b)
cta,+2(a,+af)c+4a,0=0, (7c)
while Eq. (6) gives
F/F=-2a,+a¥).
Hence,
F()=Ft;) expl~ [ | Qase+af)dl']. (8)

The appropriate initial conditions for Egs. (7) can be
obtained by invoking the representation of the delta
function as a limiting form of a free propagator

(W/\})lﬁ exp [_ (’( ;/X')Z:I'TO G(X _x;)’ (9)

where A is a constant. With this representation we have
(as t—~0)

K=F() exp(é— {(a+bx+ cx2)>

~(m) V2 exp[-(x —x")2/(AD)].
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Hence,

b~-2ifix' /(X)) and ¢ ~ik/(\f). (11)
Inserting these relations into Egs. (7), we obtain
[assuming @ .(#) regular at £=0]

A =4ifa,(0), (12)

e ~1/[4a{0)¢t], (13a)

b~—x"/[2a,0)¢], (13b)
and

a~x"%/{4a,0)]. (13c)

Equations (13a) and (13b) determine c(¢) and b(¢) unique-
ly. To fix a(/), we have to supply the integration con-
stant in Eq. (7a). As shown in the Appendix, this con-
stant is given by
a,=1{[40,(0) Rea,(0) - &,(0)]x"?
+ 4a,(0) a4(0)x’}/(8a5(0)), (13d)
where

a~x"?/(4a,(0)t) +a,. (13e)

Finally, from Egs. (8), (10), (12), and (13) we have
Flto) =1im exp[f" Qayc+a)at |/(4ifima )2, (14)
- [}

Equations (7), (13), (8), and (14) constitute our initial
value problem for the determination of the propagator.

The general solution of Eq. (7¢) (Riccati’s equation)
is, of course, not known. However, if a particular solu-
tion ¢ =¢, can be guessed, the substitution c=¢, +1/2
with z(0) =0 leads to a solvable linear equation. Once
c(#) is determined, the linear equations for 5(¢) and a(t)
can be solved and the modulating function F(/)} can be
calculated. In general, however, Eq. (7¢) with the
initial condition (13¢) has to be solved numerically.

Note that c{¢) is independent of x’ and can be calculated
“once and for all.”

3. EXAMPLES
A. Hamiltonian with constant coefficients

In the case where «; are time independent, the solu-
tion for the propagator can be readily found. A particu-
lar solution of Eq. (7c¢) is

¢,=(-~2Rea, +iQ)/(4a,),
with
Q=2[a,a, - (Rea,)?]' /2.

(15)

(16)

Using this solution, we obtain after a somewhat lengthy
but straightforward calculation

¢ =[-2Rea, sin® + Q cos Qt]/(4a, sinf), (17)

b=[-x'8F+2p(cosQt - 1) — 0,0 sinQ /(2 2,8 5inQ),

(18)
with
B= (a0, ~ a;Reaq,), (19)
a=At - (B -CcosQt) /(QsinQ¢) + x'(a; + %' Rea,)/(2a,),
(20)
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with
A=[482+ (0% ~ 40y, )9 )/ (40,2,

B=px'Q* +2p)/(2,2?), (21)
C={(x'Q*+2p)° +48°)/ (42,07,

and
F(t) = expl(i Ima ) [Q/ rifia, sinQt) /2 (22)

Thus, for the harmonic oscillator we have a¢,=a,=a,
=0y,=0, a,=mw’/2, and a,=1/(2m), yielding

1 ’ .
a=3mwx'? coswt/sinwt,

b= —-mwx'/sinwt,

¢ =%+mw coswt/sinwt,
F=[mw/Q2riksinwt)]*’?
—a well-known result.’

B. Damped harmonic oscillator
The damped harmonic oscillator satisfies
¥+ 2y% + wx =0, (23)

A time dependent Hamiltonian yielding this equation of
motion is given by

2

==L

2m (24)

exp(—2yt) + tmw’x® exp(2yt).

We therefore have oy=0,=a;=a,=0, and a,
=smwiexp(2yt), a,=(1/2m)exp(—2yf). A particular
solution of Eq. (7c) in this case is

61:%7;’1(—-7-*-2'9) exp(2yt) (25)
with

Q:(wz__yz)uz. (26)
Using this particular solution, we obtain

a=3mQx’® cosQ /sinQ! + smyx'?, 27

b= —mQx’ exp(yf)/sinf, (28)

c=3m exp(2y/)(Q cosQ -y sinQ)/sin, (29)
and

F=exp(yt/2)[mQ/(2nifisinQt)]*/ 2, (30)

Setting vy =0, the corresponding expressions for the
free harmonic oscillator are recovered.

C. Feshbach’s Hamiltonian

A time independent Hamiltonian tailored to yield the
damped harmonic oscillator equation of motion, has
been introduced by Feshbach,?:* The trick is to couple
the oscillator with another oscillator satisfying the
time reversed equation of motion. This example will
give us an opportunity to apply our method to a two-
dimensional problem. With @ defined by Eq. (26),
Feshbach’s Hamiltonian reads

F%b,py +y(yb, - 2p ) + mQxy. (31)
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The corresponding equations of motion are

X+ 29k + wPx =0 (32a)
¥ -2y + o’y =0, (32b)
Introducing the transformation
x=2"13 0 + ), y=212(x, —x,), (33)
we secure
p? p2 5 .
~y(x% P+ %, p,) (34)

Note that the unperturbed Hamiltonian is the diffevence
rather than the sum of the two free Hamiltonians. We
shall now proceed to calculate the propagator K(x,, x,, /)
=K(x,, x,,¢; x},%5,0). Again, we seek a solution of the
form (2). The Schrodinger equation yields in this case.

F 1 9% 1 9% ds 9s 3s
il = + =2 + H(x — ==\,
l”[( H('\U X2y axl ’ 6x2>

F  2m x> ~2m o5) ~ At
(35)
The ansatz
98 s as
— 4+ —_— =
T (x” Yor 5%, B, ) 0 (36)
with
S=a+bx, +cx, +dxi+exi + fxx, 37
and
F 1 3% 1 9%
oy = - TS
F  2m axl  2m 2x2 0 (38)
give
a+5(b> ~c?)/m=0, (39a)
b+(2bd ~ cf)/m -vc=0, (39b)
c+(bf ~2ce)/m —yb=0, (39¢)
d+5(4d —F2)/m +EmQ - vf=0, (39d)
é-l—é(f2 —4e%)/m —smQ —yf=0, (39¢)
F+(2df =2ef)/m —2y(d +e)=0, (391)
and
F/F=~(d-e)/m,
yielding
1 t
F() = F(t;) exp [_777 /- e)dz] . (40)
to

Similarly, using the relation

K=F(t) exp [%(a +bx, + cx, +dx; +exs +fx1x2)]

- -1/2 b ~x PN -1/2 _ (x, —x3)°
(o () Fexp (— W (T )y % exp W,

(41

890 J. Math. Phys., Vol. 19, No. 4, April 1978

and the differential equations (39), the following initial
conditions can be derived (for / — 0):

a~zm(x® ~ A/t
b~—mx/t, c~mx)/t, (42)
d~zm/t, e~-sm/l,
7(0)=0,
and
" 1 !
Flt)=lims" exp (;2 [ (d=e) dl’) : (43)
0

Inspection of the differential equations and the initial
conditions reveal that

fH=0, e(t) = —d(#). (44)

Also, we note that d, = im/2 is a particular solution
of Eq. (39d). Proceeding to solve the remaining equa-
tions we secure

d =% m® cosQ/sin&, (45)

¢ = —mQ(x} sinhy! -~ x}, coshyt)/sinf, (46)

b= ~mQ(x] coshyt — x} sinhyt)/sin§#, (47)

a=rmQUx'? — x,%) cosQ /sindlt, (48)
and

F=mQ/(2n#sinQt). (49)

It is easy to check that the initial condition K

~&(x, —x]) 8(x, —x}) is indeed satisfied by the solution
above. The peculiarities of Feshbach’s Hamiltonian are
again manifested in the limit of no-interaction. Letting
y — 0 we obtain [in accordance with the minus sign in
Eq. (34)],

K(xy, %y, 05X, X5, O)V_:OK()(XU t5x7,0) « K (0, £ %3, 0),

(50)
where K, is the propagator for the free harmonic oscil-
lator. This suggests that K should be interpreted as
the amplitude for particle 1 to go from xj at /=0 to x,
at time ¢, while particle 2 proceeds from x, at time / to
xy at £=0. An alternative derivation of this propagator,
in the occupation number representation, can be found
in Ref. 2.

4. DISCUSSION

We have seen above how, in the case of quadratic
Hamiltonians, one can bypass the equations of motion
and obtain the action directly as a solution of an initial-
value problem. Though we have concentrated on one-
dimensional Hamiltonians, it is clear that the method
can be applied to higher dimensions.

It is perhaps interesting to note that once the initial-
value problem has been solved, the classical path can
be regained by an additional quadrature. We shall
demonstrate this point for a somewhat limited class of
Hamiltonians, namely, those with velocity independent
potentials. Thus, consider the Hamiltonian

H=0,p%+a,+ ax +a,x°, (51)
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where, in general, «,=a,(¢). The corresponding equa-
tion of motion,

% —(@y/ag)x+2a,(a, + 2a,0)=0, (52)
can be written as a first order equation, namely,
d{ 1 - 1 . )
< - —— -2 =- 53
P <2a4 x 2cx) +4oz4c<20[‘1 x-2cx a,, (53)

where c(/) satisfies Eq. (7¢). Equation (53) for the
quantity

b= % —2cx (54)

1
2a,
coincides with Eq. (7b). Thus, given b(¢) and c{¢) as
determined by Eqs. (7¢), (13¢), (7b), and (13b), the
linear equation (54) can be solved for x(¢),

x(f) = exp[- ftT da,cdt'x —ftT2a4b
Xexp[ftlT4a4cdt”]dt’}. (55)

In the above, we have used x(7)=x. It is not difficult
to check [using Eq. (13b) and (13c)] that the trajectory
(55) satisfies

x() = . (56)

Thus, x(¢) as given by Eq. (55) is the classical path
passing through the end point " and x at times {=0 and
t="T.

The Lagrangian for the system is given by
L=px-H=x*/(4a,) ~ 0y - &% ~ a,%°. (57)
Using Eqs. (7) and (54) we have
L=[x(b+2cx) = a,b+2cx)*] +(a+ ab?)

+(b+ dabe)x +(c+4a,c0)x’
d 2
== (a+bx+cx?).

Thus

Sa = [, Lat=1m[SAT), T) - S(xlty), 1)) (58)

o

Introducing x{(7)=x, x(0)=x', and using the initial val-
ues (13) and Eq. (A4), we obtain

Seilx, T;x7,0)=S(x, T)=S{x, T; x’, 0). (59)

The classical action is therefore that solution of the
Hamilton—Jacobi equation, which satisfies the initial
condition (13), namely,

1 (x=x')?

Sd(x, T; x’, O)T:O m —__T———

= 5o, (60)

In the WKB approximation (which should be exact for
quadratic Hamiltonians), the modulating factor F is ex-
plicitly given by*

28 . 1/2

This is a useful expression provided S,,(x,#;x’,0) is
known analytically. Indeed, using Eqs. (4), (5), and
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(13), one can check that the WKB expression (61) satis-
fies the differential equation (6) together with the initial
condition

F, :0(477iﬁot4(0)t)“/ 2

as long as the coefficient &, in the Hamiltonian is real.
The phase of the WKB expression is wrong for a,+ of.
Instead one has

¢ 328 1/2
F:exp(z‘f0 Imasdt’)<axax, (-2111'72“)) . (62)
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APPENDIX

Equation (7a) determines a(¢) up to a constant. In
order to establish the missing constant, we shall need the
the coefficients b, and ¢, in the expansion

b~=-2x"/[4a,0)¢]+ by,

c~1/[4a,(0)¢] + cq.

Substituting the above expansion in (7b) and (7c), we
obtain

bo=x",(0)/[405(0)] - a3(0)/[2,(0)],

(A1)

(A2)
co= —{Rea,(0)/[20,(0)] + &,(0)/[8a%(0) ]}.
Thus, with
a~x"?/[4a,(0)t]+a, (A3)

we have
K=F()exp[i/Ela + bx + cx*)]
~8(x - x') exp[(i/F)ay + box + cox?) |

In order for the right-hand side to reduce to 6(x - x'),
the exponent (a, + box + c,¥°) must be a multiple of
(x ~x'). Hence,

a,= - (bgx’ +cx'?). (a9
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In applying the method of correlated basis functions to inhomogeneous systems such as electrons in a
solid, in systems bounded by surfaces, and in systems with impurities, matrix elements of multiple density
fluctuation operators are needed. These are the multiple density correlation functions. We evaluate these
functions in the convolution approximation and express them in usable forms.

. INTRODUCTION

In variational calculations for interacting quantum
liquids and solids, correlated wavefunctions have made
some rather impressive contributions. s> While this is
particularly true for calculations on homogeneous sys-
tems, recent progress in treating certain classes of
surface problems® encourages us to explore further the
applicability of correlated wavefunctions to many in-
homogeneous systems. Among those considered are
surfaces of liquid He and nuclear matter, inhomo-
geneous electron liquids, impurities in solids, exciton
droplets, and atomic systems.

By correlated wavefunctions, we mean wavefunctions
which take into account the more important correla-
tion effects. In particular, one could modify the Slater
determinant, D, with a Jastrow factor,

p=D ,I},ﬂr;-,rj), (1)

to account for pair correlations. If the pairwise inter-
action between the particles contains a strong repulsive
core, f(r,,r,) can be chosen to diminish rapidly with
v;;=r;=r,|. Thus the Jastrow factor I,; f(r;, r;)
serves to discourage overlap of the cores and makes
the wavefunction much more realistic.

In the case of homogeneous systems, the elements
of D are plane waves (with spin functions for fermions),
and momentum is a good quantum number. The matrix
elements connecting correlated wavefunctions involve
simple Fourier transforms of f(»;,) and Kronecker
deltas. They are not easy to calculate, but are still
manageable with the help of appropriate approximation
schemes, For inhomogeneous systems, D represents
antisymmetrized products of single particle wave-
functions. The matrix elements become more compli-
cated. We intend to show in this paper that, at least
in the convolution approximation, they can still be
calculated and expressed in usable forms.

To be specific, we shall write down the relevant

BVWork supported in part by the National Science Foundation
through Grants DMR76-18375, DMR76-01057 to the Materials
Research Center of Northwestern University, and DMR76-
20643 to Northeastern University.,

892 J. Math. Phys. 19(4), April 1978

0022-2488/78/1904-0892%1.00

equations for an inhomogeneous electron liquid and
identify the required matrix elements.

In this model, we assume a static lattice structure
for the ions, so that the ion variables reduce to con-
stant lattice vectors R,, a=1,2,...,N. There are
N electrons moving in a volume @ consistent with the
lattice vectors R,. The electron coordinates are de-
noted by r;, i=1,2,...,N. The electron density is
represented by a function »n(r), and the meandensity is
given by p=N/Q=(1/Q) [ n(r)dr. The Hamiltonian for
the electron system is then given by

H:é h; +;Z;) 2(r;) = sNpvg, (2)
where K

hi:;TZQ— Vi 4+ V(r)), (3)

V(rn:é o(Ir - R,D), (4)
and

()= /v, (5)

In Eq. (2) »y denotes the Fourier transform of the
Coulomb potential in the long wavelength limit. Thus
the last term in Eq. {2) takes out the electiron self-
energy.

Generalizing our earlier work® on the homogeneous
electron liquid, an appropriate variational wavefunction
will still take the form (1), except that D now repre-
sents a determinant made up of Bloch function elements
and spin functions. For simplicity, we make the ap-
proximation that f(r,, r;) be Sentral, and write

cl»:D-IFI f(J'ij)zDo{epoIéﬁ((r”)}, (6)
i<j i<
=D- [exp (Z;—z 7;7 (k) (PP — N)ﬂ , ("
where
N
Py :Z exp(ik - 1,), (8)
and
w(ky= [ u(r)exp(ik - r)dr . (9)
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With respect to such a correlated wavefunction we must
now evaluate the energy expectation value,

N
(H) :E< h’i) +?‘_</j< U(”“» - %‘vaos (10)

where

2,y [ *Oudr, cordry

O =
(O =% o Tiudr, - dr,

(11)

for any operator O. After several steps of integration
by parts and algebraic manipulation, we find

N
ne
<H> :ZJIGi - W:/;z: “(k)“(l)k * 1< PleP-kq)

. (12)
o= 20 y =N

) %élk(wkp-k) ),
where v,=4we?/k* and ¢; denotes the single particle
energy given by

ho(r)=¢; v, (x). (13)
Clearly, we need the matrix elements

IRy, Ky) = (py, Py, (14)
and

Ik, Ky, K5) = (py Py Py, 7 s (15)

for use in the energy formulas.

These matrix elements are many-body integrals.
From classical statistical mechanics one learns how
they might be evaluated with cluster expansion pro-
cedures or stochastic methods. Yet, to our taste, in-
tegral equation techniques appear more efficient and
reliable. By generalizing the formalism developed in
Ref. 4, we define

In(kl! k?; .

where the expectation value is now taken with respect
to the wavefunction :

v R ) =0y Py, e P (16)

N
7. L
¢,=D {exp%{ 7 u(r b (1n
Differentiating Eq. (16) with respect to u, we find the
recurrence relation

d
@In(kl’k‘zr e ykn} U)

zilﬁzk;lt(k)[gnz(kl, k29 ey km k, - kl u)

_In(kl’kau“ﬂknlp’)IZ(k’-k‘u')]! (18)

thus a hierachy of differential equations, By truncating
the hierarchy with a reasonable closure approximation,
one can in principle solve the equations and obtain all
Ik, Ky ..., k,l1t), and in particular all

Lk, Ky, ) =k kK = 1), (19)
In the lowest orders, Eq. (18) yields

'({dﬁjl(kl‘ W)= %kzu(k)[h(kl, k, _kl )

_Il(kll “)Ig(ks - k{ }l)]

L 1, k| 1) =55 DL, K, K, k| )
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- Lk, k, | ), (K, ~k| p)]. (20)

If I, and I, are expressed in terms of I, and I,, then
Eq. (20) is a set of two coupled differential equations
and can be solved for I,(k!u) and L(k,, k, | ).

In this paper, we derive general formulas for the
matrix elements I, (k,,k,, ... ,Kk,! u) which, in the con-
volution approximation are given in terms of I, and [,.
Specific expressions for I,, I,, and I, are given. Except
where noted, the model in mind will be the inhomoge-
neous electron liquid as defined in this section. De-
tailed application and results will be presented else-
where.

Il. MATHEMATICAL FORMULATION

Consider an N-particle system which possesses a
nonuniform density distribution. The inhomogeneity
may be the consequence of an external periodic potential
such as in the case of electron liquids in solids. It may
also be caused by the existence of a surface, or the
presence of local impurities. We shall first formulate
our analysis generally without specifying the type of
inhomogeneity to encompass all these possibilities,
The result will then be specialized to the case of a
periodic inhomogeneity.

As mentioned in the Introduction, we wish to evaluate
the multiple density correlation function

In(kl,n..,knlll)=<ﬁ)xi---Pk,,>u: (21)

where ( ), denotes the quantum mechanical expectation
value defined in Eq. (11} by the wavefunction

P, (T, ..., ry) of the N-particle system. For conven-
ience, we shall omit the subscript ¢ as well as all
references to spins in the following.

The formal evaluation of I, follows closely that for a
homogeneous system.® First, we define the n-particle
distribution function

Plrys...,1,)

N!
:W:—n)'f |4|2dr,,, ... dey/ [|o]%dr, ... dry,

(22)

which, by definition, is symmetric in its n coordinates.
For a homogeneous system the one-particle distribution
function p,(r) is a constant equal to the mean particle
density p=N/Q., For an inhomogeneous system py(r)
will be dependent on spatial coordinates. Next we define
the cluster functions fy, f3,..., as follows:

Do(ry, rz) :pl(rl)pl(rz)[l + folry, rz)];
Py, 1y, 1y) :pl(rl)pl(rz)pl(rB)[l +folry, 1) +fo(ry, 1)

+fo(rg, 11) + fo(ry, 15, 15)], (23)
ete.
Further, define the Fourier transforms:
m(k)= [ p,(r)exp(ik - r) dr, (24)
pl(r):é?n(k) exp(~ikor), (25)
F (k,...,k,)
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:fpl(r,). RN E T ¢ JRS
xexpli(k, *r; +... +k,+r,)]dr,... dr

(26)
n=2,

ns

It is then a direct consequence of these definitions that
the expectation value (21) can be written as®

I (k) =7(k),

Lk, k,) =7n(k,)n(k,) + U,(k,, k,), 27
Lk, k,, k) =7k, )n(k,)m(k,) + (kU (K, k,) + 7(k,)U,(ks, k,)
+7(k)U,(ky, ko) + Uslk,, ky, ky),

ete.,

where

Uy(k,, k,) =7(k, +k,) + F,(k,, k),

Uik, k,, k) =7(k, + k, + k;) + Fy(k,, k, + k;) (28)
+ Fo(k,, ks + k) + Fo(ky, k, + k) + Fo(k, ky, k),

etc.

This completes the formal evaluation of I,. While Eqs.
(27) and (28) are exact, the usefulness of this formula-
tion rests in the fact that U,(k,,...,k,) assumes a sim-
ple form when the convolution approximation is used
for p,. This will then make the evaluation of I, practical
for reasonably large values of n. The rest of this paper
will be devoted to evaluating U,. However, there also
exist some general properties of the F and U functions
which are exact. We now describe these properties.

An immediate consequence of the definition (22) of
P, is the sequential relation®
f/)l(r)dr:N,
[Py v oy T )AE L = (N =) (ry, .., 1),

(29)

n>1. (30)

Equations (29) and (30) imply, in turn, the following
conditions on f:

fpl(rZ)fz(rl’ r)dr,=~-1, (31)
fpl(rml)fnd(rl! L rn»,l)dr,ﬂl == nf,,(rl, ey I‘n), nz2,
(32)

Note that Eq. (31), which reflects the normalization of
f», is a rather stringent condition. It will play an es-
sential role in later discussions.

In terms of the F functions, conditions (31) and (32)
lead to

F,(k;, 0) =~ w(ky), (33)

Foikyy oo,k , 0)==nF,(Kk,... k). (34)
It then follows from Eq. (28) that

U, k,...,k,)=0 for any k;=0, n=>2, (35)

Equation (35) is an exact result, and is a direct con-
sequence of the sequential relation. Assuming reason-
able behavior for U,, we then expect U, to go to zero
smoothly for small k,. In fact, we shall explicitly see
that under the convolution approximation of p, which
preserves the sequential relation, U, vanishes linearly
in k,. However, it must be pointed out that it is not
generally true that U, is continuous at 2, =0 such as in
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the case of a short-range Jastrow function with D=1,
For such systems U, will not vanish in the %; — 0 limit.

Another consequence of the definitions is that the
function U, is of the order of N.® This is so because the
moving of one particle to infinity reduces the n-particle
distribution function to (n - 1)-particle distribution
function. As a consequence, we expect

lim f(r,...,r,)=0, (386)

Tij‘-c

lsi<jsn,

The assertion then follows from Egs. (28) and (26).
Similarly we expect 7(k) to be of the order of N if it
does not vanish.

It proves convenient to introduce the Fourier trans-
forms

1 .
8(K,, X,) =5 ffz(rl, r,)exp[-i(K, - T, + K, - ,)]dr,dr,,

or

folr )= 2. 6Ky, K,)expli(K, -1, + K, - r,)].

KKy

(37)

It is easily verified that the normalization condition
(31) of f, can be written as

Z;J T(K,)0(K,, K,) = - 6¢ (K, 0),

2

where d, is the Kronecker delta function. The following
identities implied by Eq. (38) will be used in later
discussions:
k)= 2 w(K)rk+K,) - (K, -k, K,+k)],

K,.K,

(38)

(39)

m(k, + k)= KZKQ m(k, + K1k, + K,)[ - 8(K, —k,, K, + k,)].
(40)

1*

Despite its apparent asymmetric appearance, Eq. (40)
is actually symmetric in k, and k,.

1. CONVOLUTION APPROXIMATION

In the development of the theory of liquid *He, Jack-
son and Feenberg® proposed a convolution approxima-
tion for the three-particle distribution function, p,,
which satisfies the sequential relation exactly. The
convolution form has since been extended to p, for
general »,” and used in the evaluation of /, for a homo-
geneous system. ® To evaluate I, for inhomogeneous
systems, we shall therefore first need a generalization
of the convolution approximation.

It is straightforward to generalize the convolution
form for p,. Using Eq. (31), one easily verifies that
the expression

p:(iﬂ(rls Ty, r3)
=p1(r1)f)1(r2)p1(r3)[1 +f12 +f23 +f31 + f12f23
+fosFor +forfro + [ D10 frafoafsadra]

satisfies the sequential relation Eq. (30) for n=2.
Here, we have adopted the shorthand notation

fii=rhr, ).

Since Eq. (41) reduces to the convolution form for p,

(41)
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of Refs. 6 and 7 upon taking p,(r)=p, it is a natural
generalization of the convolution approximation.

To further generalize Eq. (41) to p{® for n>3, itis
convenient, as in Ref, 7, to use graphical terms for
algebraic expressions.

We refer to Ref, 7 for definitions of terms in linear
graph theory. It is seen that Eq. (41) can be represented
by precisely the same graphs as in Ref. 7, which we
reproduce in Fig. 1. However, the following rules will
now be used to convert graphs into algebraic expres-
sions:

(i} The line joining two root points labeled 7 and j
carries a weight f;,.

(ii) The root point labeled i carries a weight p,(r;).

(iii) Each black point carries a dummy label 2 and
a weight

fpl(rk)drk'

(iv) The algebraic expression represented by a graph
is the product of the weights in (i)—(iii).

With the diagram rules (i)~(iv), it is not difficult to
see that the analysis of Ref. 7 can be carried through
without change. The key step is, of course, the utiliza-
tion of the normalization condition (31), The considera-
tion eventually leads to the same expression of p{’ as
in Ref, 7.

For our purpose, it suffices to give only the ex-
pression for f,. One finds as in Ref. 7

(e Ax,, - - (42)

=the collection of all distinct, connected, 7-rooted
Cayley trees, provided that all black points are nodes.

1)

As an example, f{°’ is shown in Fig. 1.

We now substitute Eq. (42) into Eq. (26) to evaluate
F!{9 the convolution form for F,. The result is most
conveniently expressed in terms of the Fourier trans-
formed functions 7(k) and 6(K,, K,). The substitution
leads to

FIG. 2. Graphical represen-
tations of expressions (45)—
@n.
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F{(k,,...,k,)=the same graphs as in Eq. (42),

(43)
provided that the following graph rules are used:

(a) Cut each line into two halves at the midpoint and
label the two halves with momenta K, and K; re-
spectively.

(b) The line labeled K, and K; carries a weight

27 6K, K.
Ky’ K
(¢) The root point labeled ¢ carries a weight

n(k; + 3K,), where YK, is the sum of the momenta of
the half-lines incident at the root point.

(44)

(d) Each black point carries a weight 7(JK,), where
YK, has the same meaning as in (c).

(e) The algebraic expression of a graph in Eq. (43) is
the product of all the weights in (b)—{d).

Note that we have numbered the momentum-space
graph rules by Roman letters to distinguish them from
the rules in the r-space. Some typical terms in Eq.
(43) are shown in Fig, 2 with the algebraic expressions
given as follows:

(2) Fylky, k)
= [ 1)y (r Y (xy, ) explily - 1y +1y o 1)y,
= Z ‘lT(kl + Kl)‘ﬂ(kz + K2)9 (Kly Kz):

K1, Kp

(b) fp1(11)p1(r2)p1(r3)f12f23

(45)

xexpli(k, * 1, +k, ° 1, + k, ° v5)]dr,dr,dr,

= 2

Kpseeo,Ky

n(k, + Kk, + K, + Kk, +K,)

x0(Ky, K;)0(Ky, K,), (46)

(e) fp1(r1) oo o De(P) fr5fus oo 36 56

xexplilk, s v, +.., +k,or,)dr, ... dr,

= 220 1 n(k, +K)O(K,, K)16(K,, K,)
K, K; i1

Xa(K; + K+ K )r(K; + K+ K,). (47)

We are now in a position to evaluate U{" by com-
bining Eqs. (43) and (28). To this end it is convenient
to introduce the normal graphs as in Ref. 5. Whenever
a rooted point, labeled ¢, say, occurs as an interior
point, the graph is ‘“normalized” by converting the root
point into a black point, adding a new root point with
the same label i, and connecting the new root point to
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the black point by a broken line. Some examples of this
normalization procedure are shown in Fig, 3, Although
a new (broken) line and a new point are added to the
graph, the graph weight can be made unchanged if we
use identity (39), and associate with a broken line the
weight

~ KIZKQ 6(K, -k;, K, +k,). (48)
Here the diagram rules (a)—(e) are followed except
that the weight (48) is used in place of (44) for broken
lines. In (48), K, is the momentum label of the half-
dashed line incident to the new root point.

The above normalization procedure can be applied in
succession to graphs whose labels are sums of indi-
vidual momenta, Some examples are shown in Fig. 4,
Here, Fig. 4(a) is precisely the graphical representa-
tion of identity (40); Fig. 4(c) reads
n(k, +k, +k;)

3
= 2 M7l +K) - 6(K] -k, K, +k,)]}
K;HpKi o
X7 (K] + K, +KJ). (49)

An expression for Fig. 4(b) can be similarly obtained
from the graph using the rules (a)—(e).

After all graphs in Eq. (43) are normalized, we ar-
rive at

ULk, oony Ky)

=the collection of all distinct normal n-rooted
Cayley trees whose black points are nodes. The ter-
minal lines are either solid or broken. (50)

(Terminal lines are the lines incident to the root points
which are now on the surface of the Cayley tree.) Now,
each terminal line is either solid or broken, irre-
spective of the condition on other lines; we may there-
fore combine the solid and broken lines to form a dou-
ble terminal line and obtain

USSP

=the collection of all distinct normal n-rooted
Cayley trees whose black points are nodes and whose
terminal lines are double lines. (51)

The double (terminal) line now carries a weight which
is given by combining Eq, (44) and (48),

25 [6(K,, K,) = 8(K; ~k;, K, +K,)]. (52)
K1, Ko

Here, as in Eq. (48), K, is the momentum of the half-
double line incident to the root point labeled i,

Equation (51) is identical to the result of Ref, 5,
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except that the graph rules are now (a)—{e) with Eq.
(52) in place of Eq. (44) for terminal lines, Graphs

for Uf® have been given in Fig, 5 of Ref, 5 for n <5,
We give here only the explicit expression for n=2, 3, 4:
Uz(kn k,) :K 2 (K, + k,)n(K, + k,)

1 Ko

x[6(K,, K,) ~ 8(K; ~ Ky; K, + Kk,)], (53)

3
Uy b k)= 20 w(K] + K +K7) TL{n(K, +K,)

j1
x[6(Ki, K;) - 0(K} - k;, K; + k)11, (54)
U‘(lc’(kl’ k25 kg; k4)

= % 0{n(K, +k,) 0K, K,)

K, K; =1
- 8(K! ~k,;, K, + k)] Ha(K] + K, + K} + K])
+ (K] + K+ KK, + K, + K )8(K,, K ). (55)

Note that Eq. (52) implies U{® ~k, for any %, ~0 if the
function 6 has a Taylor’s expansion. This is the result
alluded to earlier in the text.

IV. APPLICATIONS

The expression (51) for U, has been derived using the
convolution approximation; otherwise it is an exact
result. In applications further simplification usually
arises either due to some special properties of the
physical system or additional approximations introduced
for convenience. To make our formulation useful we
now describe some of these simplifications,

Consider first the case of a homogeneous system.
For an isotropic and homogeneous many-particle sys-
tem we expect p,(r)=p and the two-particle distribution
function p,(r,, r,) to depend only on the distance between
the two particles, or

folry, 1o} =h(r,,). (56)
Thus from Eq. (37) we find

8Ky, K,) = N"1u(K )5 . (K, + K,, 0), (57)
where

u(k) = pf exp(ik * ¥)h(r)dr., (58)
The normalization condition now reads

u(0)=-1, (59)
Also from Eq. (25),

7(k) =Nd,(k, 0). (60)

Substituting these results into Eq. (51), we see that the
graph rules (a)—(e) may be greatly simplified. In par-
ticular, each line now carries a single momentum label
and a weight #(K) for internal lines and weight u(k,)
~u#(0) for terminal lines, The root and black points
carry no weight except that momentum is conserved at
black points. This is the result of Ref. 7.

In the application to inhomogeneous systems it may
be necessary for reasons of practicality to assume ap-
proximation (56), even though the one-particle distri-
bution function should still be dependent on spatial
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coordinates. Again, this leads to a single momentum
label for each line and the graph rules are simplified
accordingly.

Finally, we consider the application to a system with
periodic inhomogeneity. For such a system the n-par-
ticle distribution function (23) is expected to remain
unchanged under the translation R of all particle coor-
dinates, where R is any lattice vector of the underlying
Bravais lattice.® This says in particular

pi(r+R)=py(r) (61)
and

fulr 4R, L., +RY=f (r, . .., 1,). (62)
It then follows from Eqgs. (25) and (37) that

7(K) =My, (k, GIT(G) (63)
and

8(K,, K,) =M5 (K, +K,, G)o(K,, K,), (64)
where

T(G) = [ oyt con AT Py(T)exp(iG - 1), (65)
and

U(KUKZ) =f unit cell driferfz(r“rz)

xexp[-i(K, * r, + K, 1,)]. (86)

In Eqs. (63) and (64), M is the number of unit cells of
the periodic lattice, and G is a reciprocal lattice vector
satisfying

exp(iG*R)=1. (67)
Similarly, Egs. (62), (26), and (28) imply that
Uk, ..., k)=Mbs (k +...+k,,Gu, n>2, (68)

where u, =0(1). Note that Eq. (68) is an exact result
valid for any system satisfying Eq. (62).
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V. CONCLUSION

We have evaluated in a closed form the multiple den-
sity correlation function I, for a nonuniform system.
The exact expression of I, is given in Egs. {27) and (28)
in terms of the cluster integrals U, . In Sec. III we gen-
eralized the convolution approximation for the n-particle
distribution function to nonuniform systems, and used
this approximation to evaluate U,. This leads to the
closed form expression (51) for U,. Explicit expressions
for n=2,3,4 are given in (53)—(55). Finally in Sec. V
the formulation is specialized to specific systems in-
cluding the case of a periodic inhomogeneity,
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Scaling invariance of helical curve motion and soliton

equations?

Nino R. Pereira

Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 5 May 1977)

The scaling properties of the equations describing the motion of helical curves determine the scaling of the
associated nonlinear evolution equations. Only two polynomial scaling-invariant evolution equations can be
found. Of these, the nonlinear Schriodinger equation has the physically correct scaling invariance, but the

modified Korteweg—de Vries can not be connected to realistic helical curves.

Many physical phenomena and the equations that de-
scribe them are invariant under a change in scale. Scal-
ing invariance of a linear equation leaves the dependent
variable unaffected, but in nonlinear equations the de-
pendent variable must typically scale in some specific
way to retain the invariance, depending on the equation.

In an extension of Hasimoto’s work, ! Lamb? recently
found an interesting connection between various non-
linear evolution equations and the motion of vortex fila-
ments or helical curves. The vortex motion equations
are linear, and yield in a natural way the linear inverse
scattering equations associated with the nonlinear evo-
lution equations. The equations in question are the
sine—Gordon and Hirota® equations. The latter contains
the modified Korteweg—de Vries and nonlinear
Schrodinger equation as special cases.

This paper shows that scaling invariance® of the
vortex equations (1) is consistent only with one particu-
lar scaling of the nonlinear evolution equation, namely
that of the nonlinear Schrodinger equation. Specifically,
only this equation is connected to physically realizable
vortex motion, i.e., motion with a given scaling in-
variant circulation. The other evolution equations dis-
cussed by Lamb can be obtained by allowing the circu-
lation to change with scaling, or by considering a dif-
ferent dependent variable.

It is worth noting that invariance transformations of
nonlinear evolution equations have been investigated
recently in some detail,® That work exploited group-
theoretical properties of infinitesimal invariance trans-
formations. The scaling transformation used here is
finite, and can be generated by iteration of its infinitesi-
mal counterpart. We consider the finite scaling trans-
formation because it is a fairly obvious and convenient,
but yet nontrivial and hence an attractive means for a
preliminary investigation of nonlinear equations. For
completeness we note that nonlinear equations with
soliton behavior need not be scaling invariant,3+*

The association of nonlinear equations with helical
motion proceeds as follows. 1.2

aWork done under the auspices of the U.S. Energy Research
and Development Administration,
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The Serret—Frenet equations are

~

fs = Kﬁ, (la)
Bs = - T}; (lb)
ﬁS:TE - Kf, (lc)

where the subscript denotes partial differentiation with
respect to the arc length s and the functions (s, ¢} and
7(s,!) are curvature and torsion respectively, which
also depend on the time /. The tangent vector { is de-
fined by the derivative of the position vector X(s, (),

F=X(s,0), (1d)
while 7 and b are the normal and binormal to the curve.

The motion of the vortex is approximated by
X, =Gkb, (1le)

where G is proportional to the circulation, the integral
of fluid velocity around the vortex. The vortex strength
G is constant for any one vortex, and can be chosen
unity by suitable normalization of time /.

With introduction of the complex vector N(s, ¢),

N=(1+ib) expli [ ds"(T -7}, (2a)
and the complex scalar

E Kexp[z‘f_ids'(‘r -7l (2b)
(T, is the asymptotic value of the torsion as |si —),
combination of Eqs. (1la)—(1c) yields

N, +iTN=~ 4, (3a)

o= 5N + yN*). (3b)

The function ¥ will be the dependent variable in the
nonlinear evolution equation, and is assumed to vanish
as |s|—o,

The norm-preserving variation of N and { in time,
on the other hand, can be written as’

N, =iRN + 1, (4a)
fy = =5 (y*N+yN*), (4b)

where R(s,t) is real and ¥(s,{) complex. The equation
of motion (1le) can be expressed as

X, =C**N+CyN*+ 0, C=%(;+in), (4c)
where £, 7, and 6 are real functions of s and { yet to

be determined. Equating mixed second derivatives of
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N from (3) and (4) yields

Yy v T ity = RY)=0, (5a)

R, =3ilyy* = y*y). (5b)
Furthermore, use of X, =X, gives®

-3y =(Cy), +iT,Cy + 36y, (6a)

es:dl/)lz’ (6b)
and, using Eq. (2b),

Ry=[y|") = 2nly* -6, (6c)

The desired evolution equation for y, Eq. (5a), con-
tains only one time derivative. The auxiliary functions
R,v,t, and 6 are related by Egs. (5b)—(6c). The linear
inverse scattering equations, which allow us to solve
Eq. (5a) for y analytically, follow from (3) and (6) as
shown by Lamb. They contain R and y with 7, as the
eigenvalue.

How do Eqgs. (1)—(8) behave under a scaling trans-
formation of the spatial coordinate s and time ¢? This
transformation has the form

(7a)
(To)

s'=uas,
t=aht.
The scaling variable o and exponent  are real.

We first consider scaling of the spatial coordinate s,
The spatial position X should transform like s, Eq.
(7a), Thus the tangent vector #, Eq. (1d), is invariant,
consistent with the physical meaning of f as the unit
vector tangent to curve X(s). The scaling of curvature
k(s,t), torsion 7(s,¢), and thus the dependent variable
¥ is, from Egs. (la)—(1c), given by

Uis, ) =ay'(s’,t'). (Tc)
The phase of ),
c(s,'r)z_/;ids’('r_'ro), (7d)

is invariant: Only the magnitude of y changes under
scaling, The unit vector #, b, and thus N, are invariant
as they should,

At this point we can already negate a direct associa-
tion between helical curve motion and those nonlinear
evolution equations with a scaling different from Eq,
(7c). An example is: the Korteweg—de Vries equation
¢, + oo, +d,,,=0. Comparing the terms ¢, and ¢
it is clear that ¢ scales according to ¢(s)=a’¢’(s’),
in contrast to Eq. (7c¢). Thus the Korteweg—de Vries
equation can not be identified with the evolution equation
(5). [We refrain from additional transformations on the
dependent variables, such as the Miura transformation,®
which connects the KdV equation to the modified KdV
equation: The MKdV equation, with nonlinear term ¢2¢,,
has the correct scaling (7c). ]

Having studied the scaling properties of the purely
geometrical part of helical curve motion, we now pro-
ceed to examine scaling of time according to Eq. (7b)
in the equation of motion (1e). The parameter G, pro-
portional to an integral of velocity x length, scales as G
= @2-"G. When in addition we use the scaling of x, we see
that Eq. (1e) is only scaling invariant when h=2.
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Hasimoto® found the corresponding nonlinear Schrddinger
equation, which is the only possible one as will become
clear later.

However, we could artificially consider a vortex with
circulation G dependent on the scaling parameter o as
Gla) =Gla =1)a®*4, Equivalently, we could choose
Eq. (le) for our dynamical equation, but refrain from
an interpretation in terms of vortices. Then nothing
compels us to take =2, and we can consider % an
arbitrary real constant.

With this assumption it follows from the defining
relations (4) that the auxiliary functions R and v, n and
¢, and @ scale as

Ris,t)=a"R'(s',1"), v(s, ) =a™'(s’,¢'), (8a)
n(s,)=a™*n'(s’,t'), t(s, ) =a™% (s, t'), (8b)
8(s, t) =a™6’(s’, t). (8¢c)

The desired evolution equation (5a) is also scaling in-
variant, since it follows from scaling-invariant equa-
tions (1) and (4).

At this point Eq. (5a) is an evolution equation for y
with unknown functions R(s,t) and y(s,t). Through Eq.
(6) these functions are functionals of . Equation (6)
contains only multiplications of the functions R, v, 7, &,
and ¢ with each other and with y and its s derivatives.
This suggests that R, ..., 6 can be chosen as polynomials’
of y and its s derivatives, with 7, appearing as a para-
meter, and the coefficients independent of s or ¢. Con-
sequently, the evolution equation is also a polynomial
in these variables.

The individual terms in a scaling invariant polynomial
must each scale in the same way as that polynomial.
Each polynomial, R, y, etc., occurring in Egs. (5)
and (6) can thus be written as a sum of specific terms,
with coefficients that follow from (5) and (6). Below
we give an example of this procedure for A=4.

The choice h =2 and =3 respectively yields the
nonlinear Schrédinger equation ip, + 2y, + |¢ |* =0,
and the modified Korteweg—de Vries equation y,

+ 3% + 9, =0. It is clear by inspection that the
scaling (7) leaves these equations invariant. Further-
more, the functions R and y are invariant: for example,
when k=2 we have®

R=|p|* - 273 and y =2iy, - 27 4.

Restricting the functional dependence of G(a) to
powers of the scaling factor o can only yield evolution
equations that are scaling invariant, A more general
functional dependence for G(a) allows the Hirota equa-
tion, which is not scaling invariant,

Instead of considering evolution equations with de-
pendent variable y one can look for evolution equations
with dependent variable the phase o, given in Eq. (7d).
This quantity is scaling invariant, just as any func-
tional of 0. Therefore, evolution equations for o are
not restricted to polynomials, unlike evolution equations
for . For o one finds the sine—Gordon equation o,
=sino. This equation also follows when one considers
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o= [5.(s,t)ds. However, the scaling exponent i be-
comes i =-1, which is not physically realizable.

We now attempt to find an evolution equation for ¢
with scaling exponent =4. Consider the polynomial ¢
with scaling power - 2=2, Its most general form is
a sum of all possible real terms, each with scaling
factor o®:

{=oc M lz e o+ oo +3*) +icyT o — ¢ *)
+CS(¢}S+¢:)+Z.CG(¢‘5"¢‘S*)7 (9)

where the coefficients ¢,—c¢, are arbitrary real num-
bers, to be determined by Eqgs. (6b), (6a), and (5a).
(A term such as 7,7y, is excluded because 7, must be
allowed to take any real value, including zero,) Equa-
tion (6b) implies

Joelulzas =0, (10)

for arbitrary y. Thus the coefficients ¢,—c¢; all vanish,
as none of the terms cancel, or can be integrated to
zero, Consequently, t=0=0, Since 6,=0 and the s
dependence in 6 enters only through y(s, f), 6 is inde-
pendent of i, and can only be a function of the constant
parameter 7,. Because ¢ scales with exponent h-1=3
[Eq. (8c)], the most general form of 8 is 6 =qa73, where
a is an arbitrary real constant. The functions n and R,
with scaling exponents h —2 =2 and k=4 respectively,
follow in a similar way from Eq. (6c) as

n=bly|*+ecr2, (11a)
R=23bly|* +icr2|y ]’ (11b)
Equation (6a) now yields for y:
y=—ibl[y] 9, —icti, +7ob o[
+le-a)Tiy. (11c)
Substituting R and y in Eq. (5a) leads to
g = i[9 %) = 20190 + 2670( [0 %),
+72[=dcyg, + (b — ) [ |%]
+@2c=-a)T¥, +ilc-a)Ty=0. (12)

The parameter 7, is the eigenvalue of the linear scat-
tering equations, ? and has to be determined by them.
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Consequently, we must choose the constants a, b, and
¢ such that 7, disappears from Eq. (12); hence the
trivial result a=b=¢=0, ¢, =0,

Proceeding in a similar way the case =5 again
yields the trivial equation y, =0, Going beyond 2=5is
increasingly tedious as the number of terms in equa-
tions like Eq. (9) increases rapidly. The number of
equations to be satisfied by the coefficients of the
various polynomials, however, increases even
faster. The likelihood of finding these relatively few
coefficients when many more equations than vari-
ables must be satisfied seems remote, but cannot
rigorously be disproven. The discussion suggests,
however, that the connection between helical curve
motion and soliton equations found by Lamb? is acci-
dental, and cannot be extended to higher order than
h=2 for the nonlinear Schrodinger and 2 =3 for the
modified Korteweg-de-Vries equations.

In conclusion, scaling invariance of vortex motion
equations only allows the scaling of Eq. (7c) for the
dependent variable in the associated nonlinear evolution
equations. Scaling invariance consistent with physically
acceptable vortex motion allows the nonlinear
Schrodinger equation only, It is furthermore suggested
that helical motion can be connected only to those
nonlinear evolution equations already found by Lamb,?
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Making two assumptions regarding the analytical continuation of the external solution to the region
Ime <0, we give the asymptotic distribution for w—oo of the eigenfrequencies of a hot perfect fluid
relativistic neutron star. It results that the real parts of the complex eigenfrequencies grow as the integers,

while their imaginary parts grow as Injw | with coefficients depending inversely on the “optical path” of

the uncoupled gravitational waves through the star.

1. INTRODUCTION

In a previous paper, ! hereafter referred to as I, we
set up two systems of integral equations for even parity
perturbations of perfect fluid neutron stars; their solu-
tions describe coupled sound and gravitational waves of
given frequency w, in the framework of a single multi-~
pole of order [ =2,

The two solutions of such equations are linearly com-
bined in order to obtain the physical solution (up to a
multiplicative constant) by the requirement that the
Lagrangian variation of the pressure vanishes on the
star surface.

In that paper we gave an argument suggesting that
the coupling between the two kinds of waves becomes
weaker and weaker for w— =, whereas the successive
iterations furnish successive approximations to the
solutions in such a limit.

In the present paper, we will prove this statement
and explicitly give the physically significant internal
solution for w—,

The linear combination expressing the physical solu-
tion u for the gravitational amplitude contains terms
whose absolute value is proportional to exp|Imew| W,.?
However, as a result of cancellations, the physical
solution can be rewritten as a linear combination of
terms whose order of magnitude is less than or equal
to exp!Imw| W, < exp|Imw| W,.2 A part of this paper is
devoted to the proof that such cancellations occur at
any order in the successive iterations. To this aim we
define here new “zero order iterations” which are given
by systems of integral equations including gravitational
and matter field “self-interactions.” In this way new
integral equations, which take into account only the
coupling between sound and gravitational waves, are
constructed and from them the physically significant

a7Supported in part by the Consiglio Nazionale delle Ricerche.
Y Present address: Department of Physics, University of
Chicago, Chicago, Ill. 60637,
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solution is derived. The advantage of this new method
lies in the fact that it makes it easier to prove the
aforementioned cancellations. After this proof is
worked out the computation of the dominant terms in
u which do not cancel turns out to be straightforward.

The significant internal solution allows us to deter-
mine the asymptotic distribution of the eigenfrequencies
in the upper w plane, provided two reasonable assump-
tions (whose validity will be the object of a subsequent
paper) is made on the analytical continuation of the ex-
ternal solution in the lower w plane.

In fact, the knowledge of such continuation is neces-
sary since the eigenfrequencies coincide with the zeroes
of W(- w), where W is the Wronskian function construct-
ed with the external and gravitational solution at the
star surface.? In the framework of the cited assump-
tions it is found that, in the region Imw >0, the distri-
bution turns out to be very similar to that of the poles
of the § matrix for the scattering of a particle in a po-
tential field in quantum mechanics, when the potential
is truncated or decreases at least more than any ex-
ponential, *»°

The plan of the paper is the following:

In Sec. 2 we give the modified integral equations for
the internal solutions, whose zero order iterations take
into account the sound and gravitational “self-
coupling.”

In Sec. 3 majorizations for such zero order iterations
are given,

In Sec. 4 the amplitudes which are needed in order

to construct the physical internal solution are suitably
majorized.

In Sec. 5 a representation of the internal physical
solution, suitable for the subsequent majorizations, is
given,

In Sec. 6 it is showed that the physical internal solu-
tion, for w—<, is a combination of terms whose order
of magnitude is less than or equal to exp!Imw|W,.
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In Sec. 7 the Wronskian function is constructed and
its leading terms for w—= are calculated; the asymp-
totic distribution of the eigenfrequencies is finally
derived.

In the Appendix we set up a method of successive
approximations for integrals appearing in Sec. 7.

2. MODIFIED INTEGRAL EQUATIONS FOR THE
INTERNAL SOLUTIONS

The symbols which are not defined in the present
context are defined in paper I.

Let us consider the following equation in U®),

[0y - ViUt =0, 2.1

where the linear differential operator O, - Vy, is the
one acting on the variable # in (I.2.10). Then let us
introduce the integral equations [whose solutions obey

(2. 1]

Ul = (°’+f g1 (r, ¥ )V UD),, dv’, (2.2)
U0 —l0 4 L; gy, V)V U, dv, (2.3)
udh = qbgﬁ,“”(xg), o=sign(Imw), (2.4

where ¢, is given by (1. 3.20) and x, = wW,, W, being
given by (I. 3.6); #'(x,), defined by (I. 3.22), satisfies
the inequality®

17 (xp)| < Cexp(= | Imw| WlL(|x, )}, (2.5)
where L(x)=x/(1+x).

U Ul are respectively regular and irregular for

r=0.
Similarly consider the following equation in H‘,
[0y - Vo JH'V =0, (2.6)

where the linear differential operator Oy - V,, is the one
acting on the variable 7 in (I. 2.23).

Let us introduce the integral equations [whose solu-
tions obey (2.6)]

HO =0 + [7 gy (r, ¥ W VauH "), a7, 2.7
H,=n% + fr;gz(v, P (Vo HEO,. dv, (2.8)
O = ¢ [9(r = EFIX) exp[- | Imw | W]

+8(r = e (x g + ¢ B (x D], (2.9

where ¢, X, W, W, are given respectively by (I. 3.21),
(I.A13), (1.3.8), and x,=wW; c,, c_ are determined by
imposing the continuity of 7o and of its derivative with
respect to 7 at the junction point . One verifies that

[0/

< Cexp(- | Imw|W,)

x{ 07 ~ VL x DI + 60 =L xDITT. (2.10)

HY and H are respectively regular and irregular
for »=0.
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In comparison with paper I, U and H{® furnish new
zero-order iterations for solutions of the “gravitational”
and “matter field” type instead of «/", 7",

In principle they account exactly for the self-inter-
action terms Vyu and V,,m appearing in (I. 3. 3) and
(1.3.4).

To be more definite, we can construct new regular
solutions of the original Eqs. (I.2.10) and (I.2.23) de-
termined by the following systems of integral equations
{to be compared with (I. 3. 26) and (1. 3. 27)],

U( = U!(O) + j;)r Gl(r: T')(V12Hg)rl d’V,,

r (2.11)
H, = J;) Gy(r, 7”)(V21U,),.: dr’,
Us: j{‘)’ Gl(’r, y’)(VIZHS)r' d’y‘l,
r (2.12)
Hs:Hs(O) * j(; GZ(,V’ yl)(VZIUs)r' d1”,
y - JULNUR) - U6 HU )
Gylr,v) ==~ Wv ™, Um)] , (2.13)
HOMAHO ) = O (') O
Gylr, vy === (MH;(v') = H3 (') Hy"(v) (2.14)

[WHD; B,

where W(iy, iy) is the Wronskian constructed with i
and lpz.

3. MAJORIZATION OF U'Q, U'®), H, 41(®)

In the following, frequent use will made of inequali-
ties relative to the functions ¢,, ¢, implied in the de-
finitions of #/”, uf, n{¥, nf. These hold for w large
enough and are easily verified by inspection,

Cy <7, < Cy, (3.1
(3.2)

Successive iterations can be given for the Egs. (2.2),
(2.3)

Cy<rlp+p) it ¢ < C,.

U’(O.nd): j(‘)fgl(,r’ T’)(Vng(o'n))r' d’V', (3. 3)
U= 1 g, V) VU™, dr, (3.4)
UéO’O):u!(O), Uéﬂ.ﬂ):uém. (3.5)
Let us set

U0 = TO7L(| 2, )T expl | Imw | W, ], (3. 6a)
i, ) =gylo, ¥V (/) [L(| x, )] 04D

X expl | Imw | (W] - W,)], (3. 6b)
V=V expl(v = 0/2lo L1 x, )] (3. 6¢)

From (3. 3), (3.5), and (3. 6) one obtains
Ui = J;) gy, r)Vilr) dWgy fo g1y, 1) Vi (7p)dW

w

Furthermore by inspection one can see that Uy gien
=i, o gan_gqu, where uéo), Vu, £, are defined by
(1. 4 4), (1.4.7), (1.4.9). Then from (I.4.13), (1.4.14)

for ¥ <7 we obtam

N g (#pn, Y Vi (r)USD AW . (3.7)

- N, ’ c rr
lgy(v, ¥ Vislr )| <m; iUg(O'O)| <C. (3.8)
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From the above inequalities and (3.7) we get

cn+1wr;

3.9
{wl™n! 3.9

|ultm) <

and then from (3. 6a), by summation of all iterations,

| U] < CrL(]x,])]** expl | Imw | W, ]. (3.10)
In a similar way, introducing
U = 0O L(| %, D] exp(= | Imw|W,), (3. 11a)

(| DT expl| tme| (W, - W),
(3.11b)
(3.11¢)

45’1(7’, ¥) =gy(v, ") (L

Vip =V expl(v = V/2Jo {L(|x, )]

one can see by inspection that 2117'11 :§117n exp{2 1 Imw|
X (WL' - W;)})

so that, owing to (1. 4.13), one obtains

~ - C R
lgi(o, V)V (#) ] <m, r<v, (8.12)
and taking into account (2.5), (3.1), and (3. 11a) one
obtains

lg@0 | <c. (3.13)

Then, with the help of the above inequality, together
with (3.4) and (3. 12), with a procedure quite similar
to that outlined for USY, we get
(3.14)

[0} < er{L(]x )] exp(- | Imw| W,).

In an analogous way the successive iterations of
(2.7) and (2. 8) read

HOmD f &7, V)V HOM),, dr', (3.15)
O f &(r, ¥V (Vo HEO™),e dr, (3.16)
HOO =g @ 0.0 _ ) (3.17)
Then let us introduce
Hs(O) :ﬁs(O),V-l(p +P)1 /21,15/2{9(;_ v)[L(lxsl )]lcl
+0(r = P[LX T Vexpl | Imw | W], (3.18a)

AU

(o +p) {60 =iz (DI

&, ) =gr, v )

+ 60 = PL(X )V} expl | 1| (W] - )],

(3. 18b)
Vg = Ve 220 {007 - [ L(x )12 + 00 - ML (| X )T}
(3.18c)
and
HO = B0 Yo+ ) 200G -~ ) [L(| x, DI
+0(r - ML(XD]T} exp(— \Imw‘W (3.19a)
172,
a7 =20, ) SUELE S A - L,
+8(r - M[L(x])] }exp [Imw [(Ws- W),
(3. 19b)
903 J. Math. Phys., Vol. 19, No. 4, April 1978

Vyp = Vagexpl(v - A)/z]vs{[L( |xs])] 007 =~ 7)

+8(r - ML X )] (3.19¢)

Now one can verify that H‘O O=F{, g Ve =5V,

and
&V =2,V expl2|Imw | (W~ WD),

where 7%, V,,, and g, are defined by (1.4.5), (1.4.8),
and (1. 4, 10). Then from (I, 4. 13) and (1. 4. 14) it follows

that:
- INTr ’ C I3
lgo(r, ¥ ) Va0 | <I_w_l’ v <, (3.20)
» Nty ’ C ’
| ga(o, v )ng(r)l <m, r<v', (3.21)
|HOO | <. (3.22)

In addition, an inequality similar to (3.13) is easily
derived,

|HOO] <C (3.23)

Finally, with a procedure similar to that outlined in
order to obtain (3. 10) and (3. 14), we get

B9 < Cort(wy - wH{a0r - ILL( I

+6(r = ML X expl | 1mw| W), (3.24)
| < Crt(Wy = W {07 - ) L(|x,) ]
+8(r - n)[L \Xl) "}exp(— \Imw]W (3.25)

4. MAJORIZATIONS OF H,, H;

A program parallel to that of Sec. 4 of paper I can
now be developed for the coupled integral equations
(2.11) and (2.12); however, in the present context, we
are interested only in the amplitudes H. Let us set

H:H~1"1(p ‘i—P)1 /21)2/2{9(;* 'V)[L(lxst )]“1

+0(r =ML X ]} expl | 1maw | W], (4.1)
U=0rL(}x,])}* exp] | Imw| W] {4.2)
1(7’ 7") =Gy, ’V)—r L(|x ‘) “*”exp lImwl We— W,

(4.3)
172,172,
G {7, 7'} = Gy, 7)o 7 exp [ Imw | (W] - W )][(‘();f;) vs/Jr
L2 D100 - 1) + 80 = DL X ]}
(4.4)
We want to prove now that

~ ’ i ’ C
]G1(7’,7’)V12(7)i<w, {4.5)

5 NG g c
}62(7’,7’)1721(7’)}(‘*[‘5, (4.8

where Vn, V21 are defined by (1.4.7), (1.4.8).

In order to do this it is necessary to give suitable
majorizations of Gy{r,7) and G,(7, '), given by (2.13)
and (2.14), and therefore, among other things, to as-
sign minorizations of the Wronskians appearing in
them.
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From (2.2) and (2. 3) one gets

W(U(O). U(O))
(O)VnU(O)

( I -1
( >’ Uy >)[1+ /0 —7—[—‘—-——exp = 9)/2

(O)V U(O)

-1
-@ ,/,,0 »% exp] ( —v)/2
w-sz uqO)VnU(O) /‘ u(ﬂ)V U(O)
o ¢5exp[(x 0721 2expl(x 7214

IR /e S S0 /‘ U(O)
-2 11 l

T /o ¢zexp (A—v)/z - ¢,zexp|()\ v)/2 d"]
4.7

Taking into account the inequality |V;| < C, quoted
in the appendix of paper I, and making use of (3 1),
(3.6a), (3.8), (3.11a), (3.13), and (3. 14) one obtains

|ww®; u®) (4.8)

o2l

In a similar way one can minorize the Wronskian
appearing in G,(r, »') making use of (3.2), (3.18a),
(3.22), (3.19a), (3.23), (3.24), and (3.25) together with
(1.3.15)

W(H®; Hi®) w(ns®; no‘"’)(l +%>

——w zexp(X—-V)/Z] lQl/ic

Us

(4.9

WD B - o )],

Taking into account that Vyy and Vy,, given by (1. 3.11),
are respectively proportional to (p+p)w™ and w™?, from
(3.10), (3. 14), (3.24), (3.25), (4. 8), and (4.9), we
straightforwardly get the inequalities (4. 5) and (4. 6),

Comparing (4. 1), (4.2) respectively with (3. 18a),
(3.6a) we get by means of (3.24), (3. 10),

'1}’;0)‘ =IH®| < C (4.10)

[T = 1T L)/ L0 2, D expl | 1moo | (W, - W)
cQC. (4.11)

Finally from (2. 11), (2. 12) together with (4.1), (4. 2),
one gets

N 1-( )" Vs
Hg(n):____z—___f Gy, ’)’1)V21(7’1)dws1
0
Wy ~
X f G1(7’1, Vg)V1z(7’2) dWsz Tt
0
Ws,1 ~
/ Gz( nals 7 )VZI(’V )U‘O)('V ) dWs ’ (4.12)
0
~ n S ~ e
Hs(n)zl_%—ll f Gy(r, 1’1)V21(7’1)dwsl
0
Wy o ~
x/ Gy(ry, Vz)Vlz(VZ)dW% t
0
Wsnul ~ >
f Cy(roa, 7 )Vles(O)(T") dWsn- (4.13)
0

From these and from (4. 5), (4. 6), (4. 10), and (4. 11)
it follows that
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criyn
| -
|H | n, ‘w{ n+l » (4. 14)
~ lewn
) S
IHS I ﬂ!‘wl n (4. 15)
and then, in analogy with (I. 4. 16),
= HY 1 1/2,1/2f o 141
217 e e +p) R {00 - MIL(|x,))]
n=m Hs(n) _
+[L(|X )] 8(r - )} expl | Imw [W,]
cmiym Ccw,
Xl 20 =70 .
il Twl™ o (le) (4.16)

5. REPRESENTATION OF THE PHYSICAL SOLUTION

In analogy with (1. 3. 30), (I. 3. 31), and (I. 3. 32), the
physical solution can be alternatively written as’

H:U"l"ﬂlU‘” (5. 1)
77=H,+I11Hs, (52)
- (Hg/Hs)roy (5- 3)

it follows that

1
u=(Hr)U, - Uﬁ,(ro))m

(Y )Z) z_, (HE(r)U S~ = U HID (r)]. (5.4)

s\ 0/ n=0 j=0

Now {4.12) and (4. 13) imply the relations HF" = g#mD
=0, which also lead to UZ™1 =U{¥™ =0 by iteration of
(2.11) and (2.12). Then we get

2n-1

U= L [G(Zn— 1)(73 HI Ul
s( o P

- Z, v¥ >H‘3"-“(ro)> + H}Z"’(YO)U,‘O’J . (5.5)

=1
Introducing in (5.5) the iterations of (2.11) and (2. 12)
for U, and U, we further obtain

u=U" +5,8"), (5.6)
n=1
r
n) ’ ’ A(Znul) ’ ’ .
S H (7’0)‘/ Gl('r, r )VIZ(T ) ('VO, 4 )d’}’ b (5 7)
A(")(‘r P )—L/ [H‘z“(r H(Zn-zj 1)(1,')
=0
- HE " YBIH D (), (5.8)

Now, as stated in Sec. 1, we want to show that « is
proportional to exp|Imw W, despite the fact that most
of the terms appearing in it behave like exp|Imw|W,,
In order to do this a suitable representation of the ex-
pressions in the square brackets is necessary.

Let us define
OH(O)V U(O)

k=~ —(;fwr—"mr)dr', (5.9
0
n HO@WHD (v )V, (v
Lr,7") = [SWEHS‘U’G; e (5. 10)
, H(0)<’I’)H(0)(’V')V (’V')
12(1", = uIW(Hga); HEU))Z]ITI R (5.11)
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AR = [ L, U0 dr

+ [T L, VUG ar (5.12)
f) = [ Gy, ¥ Vi fi,e ar, (5.13)
Faa) = [0, ) fonlr ) 7!
+ [T L, ) fealr A7, (5.14)
Fanst®) = [ G, ¥ (Vig faned)r @' (5.15)
From (5.9)—(5.12) we get
fo' Golr, 7Y (VUMY dr' =kHD + 1. (5.16)

Then for the terms H ) (»)HE"2-1)(y) appearing in
(5.8), taking into account (5.16), we can write

HéO)(,ro)Hg(Zn-l)
=HO (rkHED + HO (vy)
X for Gy(7r, 7) Vs (1) dry forl Gy(ry, 1) Vip(ra) dry - -

fOTZn-S Gl(yZn-Sy 72;1-2)(V12f1)r2n_2 ern-Z! (5. 17)

H§2)(7’0)H;2n'3)
:Héz)(')’o)kHézn"i) + Héz)('yo) fof Gz(’y, 1’1) VZI(/VI) dv

r
X _fgrl Gy(ryr)Vilmy) dry = =+ [ Gylrgy 5, 720d)

(Vie ey, 4 @20 (5.18)

G0 ® " w8 e 00 e BO PO eaes s e sttt te a0 H 0

Hézn-4)(70)H;3)

=kHE D (rdHY + HEO(r) [ Gy, 1) (Vig fi)yy dy,
(5.19)

HED(r)HD = kHE D (r)H + HE ) ry) fy. (5.20)

Quite similar relations can be obtained for the coun-
terterms in (5. 8) from the above ones by means of the
exchange ¥ — 7, in the arguments of H{" and f;. In the
sum appearing in (5. 8), terms and counterterms pro-
portional to k cancel one another; more precisely, the
first term cancels the last counterterm, the second
term cancels the last but one counterterm, and so on.
The sum of the remaining terms can be written as

HED () f = HE ()
n=3
+[73 (HED (g HEnH-5) -Hg"’H,a"'“'s’(ro))] o
3=0 U, <
(5.21)

where it is understood that the formal replacement
U~ f, has to be made in the integrals expressing any
Hj“’u The sum appearing in the above expression is
similar to that relative to (5. 8) with the substitution
n-mn-1, Taking into account (5.14) and (5. 15) at any
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step we finally obtain

A rg, v

n=l
) =2, (Hion-i-t )(Vo)fz;n(yl)
=0

- B0 0(r) f,04(7g)), (5.22)
which, by means of (5.6) and (5.7), allows us to get
the final expression for u.

6. MAJORIZATION FOR s/

From (5.10) and (5. 11) together with (3. 10), (3. 24),
(3.25), and (4. 8) one gets

oc17’

<= (%, ) P+ expl | 1mw | W, ], (6.1)

!f1(7’)|

where C; denotes a determination of the constant C ap-
pearing in (3.10).

Now from (3. 10), (3. 14), and (4. 8) we obtain a majori-
zation for G,(7, ') which is the same as (I. A6); making

use of such majorization together with | V| <Clwl™?
in (5. 13), we can write

ccczr

\fZ 'V)\ i IE L(lx(‘)]“l eXpHImw\W,]. (6.2)
The majorization procedure can now be extended
straightforwardly to (5. 14),
on#l
L% D" explImw W,
C C((CCy)" Cinel
11@5 T {6.3)

where C is the largest constant among Cy, C,, and C,.

Again taking into account the above cited majorizations
for G,(»,7'), Vi, and making use of (6. 3), (4. 15), (4. 1),
(3.10), and {5.7), one gets

[

exp[ {Imw | (W, + W)]
IHS(T(,) ! )

From the above inequality and from (5. 6) it follows
that

(6.4)

<L

2 s < Cs( [L() % ) expl | Tmeo | (W, + W]
wam
xc<—i1+l"—>, (6.5)
(1-8°"1-¢
£E=C/|wl®. (6.86)
From the results of Secs. 3 and 4 it follows that®
Hr) *HO (ry) =i (ry), (8.7)

and then from the explicit evaluation of 7{(r;) by means
of (1.3.18),

C exp| | Imw | W]

|Hor | = [ 2@y | = Tt

(6. 8)
So from (6. 4), (6.7), and (6.8) one sees that u near the

star surface 1s proportional to exp[ | Imw|W, (ro)] times
powers of w!
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7. ZEROES OF THE WRONSKIAN

Let us now consider the Wronskian W(x, #_), whose
zeroes give the eigenfrequencies of the star,

From (5.6)—(5. 8), recalling the transformation prop-
erty of the Wronskian for two independent solutions of
a second order linear differential equation, we obtain

Wu, u_)

= W(U(O) Zl_) - m
s\

o (Zt VIZ nA (’}"
X2 - // & Ay d
_/1,/0 exp(h B,(*") dr”)
where B, is the coefficient of «#” in (I.2.10). The ex-
ternal amplitude «_ is defined by the integral equation
(I.5. 3) only for Imw > 0, so that the analytical continua-

tion of «_ to the region Imw < 0 is necessary in order
to evaluate W(u, u_) everywhere.

(7.1)

Making use of (I. 5. 3) and recalling that U® and «®

are respectively solutions of (2. 1) and (I. 3. 16), we get
WU, u) =Wl u®) |1 [ Eg”l:] , (7.2)
MNw=-w f V“u rn (7.3)
Wiy, ,u

As shown in paper I, in the region Imw > 0 we have

. =ul" +o@!?), w--, (7.4)

Recalling the definition of u”, u_and using a standard
relation between Bessel functions of order ! we get

W lD; 1!®) =~ wel exp[(r-v)/2].

Moreover, introducing for them majorizations similar
to (3.10) and (3. 14) we obtain for Imw= 0

IT(w)| <C,

(7.5)

(7.6)

W=,

Let us now assume that the above inequality, together
with (7. 3), also holds for Imw < 0.

The proof of the validity of such assumptions rests
on the possibility of analytical continuation of #_ and
will be the object of another paper. The extension of
(7. 4) to the half-plane Imw < 0 amounts to stating that
the asymptotic expression of the analytical continuation

is given by the continuation of the asymptotic expression.

We report the results of the asymptotic calculation
of the term n=1; this is obtained with the help of in-
tegration techniques developed in the Appendix, together
with the following equality (which derives from standard
relations among Bessel functions),

775 (01)4-1 Tléoz)u"l“” ——y exp[(V -~ )\)/2] 7.7)

W(ném: Mo ) ¢ w

where
770(?1) aQ= ¢s{9('r‘ ;) exp(" l Imw] Wo)ﬁ;('?l (X)
+0(r = MmN e ) + e i (x )T} (7.8)

We express A®(y, »') by means of (5.22), taking
n=1, j=0, together with (5.10)—(5. 12).
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Let us write

AV, vy = AV, 7Y + R, v'); (7.9

() ; ‘ imati
Ay is the “zero order approximation” for A% in the

sense specified in the Appendix, evaluated with the
substitutions

(0, 770,00 _ (0
Ug’ Ug = )s Ua(o)"

(0) __ g7€0,0
HO ~ g0 _ pt0)

0,0) __ (0
Us )——uu ),

HE ~ g0 _ O (7.10)

In the numerators of (5, 10) and (5. 11).

RMv, »") is comprehensive both of the higher order
iterations describing self-interactions and of remainders
to integrals involved in (5. 12) together with (7. 10) and
(7.11).

Similar considerations can be also made for the suc-
cessive integral I®) implied in (7. 1) in the case n=1;
again its zero order approximation /& is obtained by
means of the substitution AV (') ~ AP (x, ') together
with the substitutions (7. 10) in the numerator of G,(#, #'),
given by (2. 13).

Using (3. 10), (3. 14), (3. 24), (3. 25), (4. 8), (4. 9), and
(3. 9) together with analogous relations for U™, H&®™,
HY™ it is long, but without difficulties and completely
inthe spirit of the majorization procedures outlined in
Sec. 3, to show that the following quantities are negli-
gible for w—= in the expression between brackets in
(7.1):

(i) The integral implying R{V(r, +");

(ii) The remainder to /{!’ in the sense of the Appendix;

(iii) The contributions to I’ arising from the neglect-
ed terms in G,(7, '), which describe self-interactions;

(iv) The overall contribution ¥ 2,7/, arising from
terms of order n> 1;

The calculations lead to

1(1) z](()l)

1
ST °’¢g[],<x ( 1) -

+Jl+1(x )(h,,l(x )~ [+1 R (x )>]

!

Lnea, )

6'

Wetrg)
Vi Vosvs exp(v = A)
X

fo = oow@ED, 8 Ve (7.11

So let us introduce (7. 11) together with (4. 9) and
(6.7) in (7.1) and replace for 2"(x,) and j (x,) (v =1,
1 +1) their asymptotic expressions for xg— =,

Then, recalling that Vy,V, ~w™® and changing sign to
w according to the final remark made in Sec. 1, in the
framework of the assumptions we have done, we con-
clude that the asymptotic eigenfrequencies of the star
are given by the equation

1 +—£)—rrexp[— 2iwW, (7)) = (7.12)

where the real w-independent constant « is given by
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a:(_ 1)11-

41 (exp[(V - x)/z])
2 w3

Ve o lim,, . Vs Var©®) exp[3(v - 1)/2]
Xfo oA /v = 1] We.

(7.13)

The zeroes of (7.12) are symmetrically distributed
with respect to the imaginary axis, and for Rew >0 are
asymptotically given by

_(@n+3)n+arga

A2 2] T o 7.14
Rew" 2Wg('}’o) ’ ( )
_11IniRew,l Rew,| = Inla|
Imw, = 2WL,(1’0) ’ (7- 15)

where #n is an arbitrary integer such that the rhs of

(7. 14) is positive. As seen from the above results, the
dependence of the w,’s on the coupling between the sound
and the gravitational waves (contained in @) is weak.

8. FINAL REMARKS

The eigenfrequencies are equally spaced with respect
to the real axis of the w plane and are distributed along
a logarithmic curve.

This is also the case for the energy eigenvalues of a
particle in a spherically symmetric truncated potential
in wave mechanics.’

It is easy to see that a similar distribution also oc-
curs in the simpler case of a system® made of two uni-
form parallel strings of different nature coupled to-
gether with transversal uniformly distributed identical
springs according to Fig. 1, where A, B, and C are
fixed points and string 1 is indefinite towards the right.

The system can be compared with a neutron star
radiating gravitational waves; to be definite, strings
1 and 2 can be respectively compared with the physical
space (thought of as the medium which propagates the
gravitational radiation) and the matter in the star
(through which sound waves are propagated). We note
that in our case the asymptotic distribution of the eigen-
frequencies depends on the equilibrium structure es~
sentially through W,(#;), which can be interpreted as
the optical path of the (uncoupled) gravitational waves
throughout the star. With the constant « is associated
only a finite “displacement,” which is the same for the
various eigenfrequencies.

Another observation, which may be relevant for the
completeness of eigenmodes, is that the asymptotic
zZeroes are simple,

APPENDIX

The aim of this appendix is to give a method of suc-
cessive approximations for large values of w!, for
integrals which are involved in the iterations for U, H;

A B
FIG. 1. Coupled springs simulating the interaction of the
gravitational field with the neutron star matter,
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these belong to the general type
I= fux [A9 9, (W) ) (W) + BP0, (0d) 0y (0By)

+ C(O)(pt(wq>1) az'q(wq)z) + D(O) @,,1((.0@1) 61%1 (wq’z)]x' dxl’
(AlL)

where a=0 or = respectively, for internal and external
solutions, @.5, @1esy (j,j1=0,1) denote the product of
spherical Bessel functions of order I +j, I’ +j, times
their respective arguments w@; and wd;, &; and &,
being functions of x only; A'®, B C'© and D'© are
functions of ¥ and w; we assume that in the limit w —<
these are “slowly varying” functions of x, compared
with @,,;, ®;n; which exhibit an exponential behavior
of the type exp(iwd,); it must be understood that ¢,
and ¢;,; are constructed with Bessel functions of the
same kind, namely the coefficients of the linear com-
bination expressing ¢,,, in terms of j,,; and n,,;, are
the same as those relative to the linear combination
expressing ¢, in terms of j,, »n;; similarly, ¢, and
@y are of the same kind (though this may be different
from that relative to ¢,, ¢,,1). Let us first consider
the case &y # &;, to be distinguished from the case
&= &,. For the primitive relative to the integral (Al)
we shall tentatively assume a form similar to the
integrand

p =a(plal' + bahl(pl' + C¢15m1 +d¢1o1¢1'#1 3 (AZ)

where a, b, ¢, and d are to be determined by a method
of successive approximations. Owing to a property of
Bessel functions, we have

de ds 1+1
hdh o Dt 4 O i
dx ~ ¥ dx ( P g, w,) ’
(A3
d%q:wg_'gl( A2 > )

dx dx P wdy OV

and similar relations for ¢,., Fp‘,.q. Then the derivative
of P with respect to x can be written as a sum S of
terms, originating from the first terms in the rhs’s
of (A3) (explicitly proportional to w), plus other terms
whose sum we denote by - T.

In our problem, in the interval 0 <» <%, we have the
casel’'=l, & =W,, & =W in such case we choose the
zero order approximation a'”, 59 ¢© and d'® for
a, b, c, and d identifying S with the integrand of (A1);
in this way one gets

a(O) = (wF)'i(d'){B(O) - <I>£C‘°’)
b — (UJF)'I((I){A(O) + <I>2'D(0))

(A4)
C(O) =((.0F)-1(4>{D(0) +<§£A(O))
d(O) — (wF)d(q){c(O) - @{B(O)),
dd ad
F=(3f - @), s{=""1, #i= T (A5)
I= [a(O) (9161 + b“”wm@ + C(O)"/’zaui
+d' 000+ [T Tdr. (A6)

Now the integral in the rhs of the above equality has
a structure which is similar to that of the original
integral (A1l); however its coefficients, compared with
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A BY ' and D', exhibit an explicit factor
1/w as seen from {A4); we can therefore apply a simi-
lar procedure to such an integral, and so on, In this
way one obtains a method of successive approximations
for I when lw! is large. The mth approximation is
written as:

m
I=ngz;0 [a(")%% + b(n)(ﬂzd(pl + C(n)(ﬂz@hi + d(’”wmam]z

4+ fa" [A(m\‘i)(pl‘(p‘Z +B(m¢1)¢l+1'¢‘l

+C(”“1)<p1“<ﬁlq +D(m1)(¢7141§~91*1]dx” (A7)
a(mi) -~ (wF)-l ((I){B(n-i-l) _ ézlc(mi)),
b(ml) —— (wF)-i (q){A(ml) + (}éD(Mi)), (A8)
C(mi) :(wF)-l(é{D(m“ 4 @éA"”“),
d(mi) —_— (wF)‘i(tbi’C("””-— q)zlE(nti)),
n (n)
Al (dgx +T‘a(n)> , clmh —_ dcclx +T_C<n)> ,
(A9)
tneD) dp'm () (ne1) dd‘™ m
B _(dx T.b ) D :_(dx —T+d">,
1+1 1+1 (A10)
T, = 5= $l+ —m )
+ &y it @2 ¢‘2’

where the integral in the rhs of (A7) is the remainder
of order m of the development of I into successive
approximations; an overall factor 1/0™! can be ex-
tracted from it.

The question ig left whether the integrals of type (Al)
are convergent in the case of interest. To this aim
some observations and assumptions, bedaring on the
structure of &;, &, A®, B®, ¢® and D'”, are
necessary. We note that &{, &}, given by (A5) are re-
spectively equal to exp( - v)/2, [exp(\ - v)/2]/v,,
where v, is the velocity of sound; &{, &}, for a neutron
star, are finite, different from zero and from one
another, so that F, given by (A5) satisfies the inequal-
ity 11/Fi<C.

Now let us make the following assumptions:

(1) The equation of state is such that &{, &5, A, v
are analytical in » for »=0.

@) A® BO ¢ and D' are majorized by a con-
stant C, for 0 <y <y, together with their derivatives
with respect to » up to a certain order gq.

(3) A'® and D'® are even functions of » for » ~ 0,
whereas B and C‘® are odd.*°

From (1) we conclude that 7_, as given by (A10), in
the case under examination (I’ =1), is an odd function
of 7 and vanishes as v for » — Q.

From (A8) and (A9), and from the above assumptions
and results one proves by induction that a'”, '™, ¢,
am, A el o Fand DY are majorized by a
constant C for 0 < <%, n<q and that 5™, ¢™, ATV
and D™ are even functions of v for » —0, whereas,
a(n)’ d("), B(n+1), and cimh are odd.
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Let us further consider the case [ =1', &;= w,,
By=x=W, - W,ry), ¥ <¥ <7, which is also involved
in our problem; in this case the Bessel functions with
index [, I+ 1 may diverge respectively as x~!, x~**1
on the star surface. However, these are always multi-
plied by coefficients containing a factor x* with
o=]+1,

With reference to (A1) let us write such coefficients
in the form:

) _ A0, o
A —f1 X,

C(D) :féo)xa ,

B(O) :__féo)xa’
DO = {0y
With reference to the primitive (A2) we set

a=ax*, b=bx®, c=cx*, d=dx°. (A11)

In order to determine the lowest order approximation
a®, 3, &9 and d'©, we formally write @, b, ¢, and
d in the form

a=2 am, b=2 5",
" § (A12)

o)
I

. Z‘ (j(n) EZZ E(n)
n ’ n '

Let us further replace (A11) and (A12) into the deriva-
tive with respect to x of (A2), and equate the coefficients
of @.; ¢1.5, (4,75 =0,1) relative to the largest power
of w in such a derivative with the analogous coefficients
in the integrand of (Al).

In this way we obtain:

0 _ (D) o o
0 _ Usla = f3 g __ S TUshy
- wF ! - wF ’
(A13)
() o ) (0)
s _fi Uy 70 _ Ja = Usfs
’ wF ? WF :

Then the integral I can be written as

(5(0)%57 +5(0)§01+157+E(0)901—(57w1 +‘7(0)90m‘957+1)xa
x — e p—
+J; [ (P 0,07+ 01107 T £5V 0,07
+f4(1)(pl+1a'i+1)]x' d?(', (A14)
where:
1 [ oV =" <z+1 I+1
y _ _ L/ 3 +
f1 w [ F ng Us 2 X
+ 4 <1’§£2.(_01:l§(_01)]
dx F ’
£ 1 [f4(0) + o 1 (2 I+1 11 p>
T Ty F x w, s
L4 (M)]
dx F ’
f(l) — _]; ‘:l +1 » _fi(o) hs v&f;m + j_i_ (f1(0) + 1lsf4(0) )]
8 wlw, s F dx F ’
f(i):_ —1_ [l+1 ; 1',5-1:3(0) _f2(0) _‘_11_ <f2(0)_vsf3(0)>—‘
¢ wlw, s F dx F 1
{A15)

The integral in the rhs of {A14) belongs to the same
type as (Al); however, its coefficients, compared to
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those of (A1), contain an additional factor 1/w; we can
thus set up a method of successive approximations for
I for large values of |w! by treating such an integral
in a way similar to the previous one, and so on. The
mth approximation reads

m — — — —_
l=n§% [xa(a(n)(pl(p?+ b(")whi(pf_*—c(")(pl(ﬂﬁl

+d™ 9,1 @01.4) 5+ f;x[x“(f1('"m 101+ 0,07
"D 0,054 ™0 011 914) ] di, (A16)

where £{™1 are related to f,™ (k,j=1,2,3,4) by the
same relationships as those between £, and £,
namely (A15); a™, 5, ¢, and d™ are formally
obtained from (A13) w1th the substitution of the index
(0) with the index (#)., Also in this case it must be
verified that the successive approximations and their
remainders are finite in the range of interest
Y¥<r<wy.

To this aim let us assume that:

(4) £,{” are majorized by a constant C together with
their derivatives up to a certain order g¢.

(5) A" and 7{? behave like even functions of x in the
limit x — 0, whereas £ and 7" behave like odd func-
tions in the same limit,

{6) /¥ are analytical in » in a certain neighborhood
of r=w.

It easily follows by induction from (A13) and (A15)
that a™, 5™, ¢ 4 and 7™ are majorized by a
constant C for n < <q, in addltlonfi"”“ D e and
d‘™ behave like even function of x for x —~ 0, whereas
Famb gD gm Cand d behave like odd functions in
the same limit for n<g¢,

Let us finally give a similar approach for integrals
of type (A1) with &4 = &,; for the purpose of the present
paper it will be enough to consider the case /=1’. Since
the coefficients AV, BY 'O and D'© are arbitary,
we assume the variable x to coincide with &; = &,.

First of all, integrating the last term of (A1) by
parts we obtain, by means of (A3),

x X 0)
— 1 dapD —
f D(O)Wni‘puidx':;f “ax Py P dx’
X
_ 1 -
+ j D(O)‘pl‘pl dx’ — Zo_ D(O)(pl(p”'1 ,

(A17)

moreover, recalling that, owing to a property of Bessel
functions, the expression ¢,¢,.; - ¢,¢,, is a constant,
again with the help of (A3), one obtains by further
partial integrations

f (/190119 +/20:91.4) dx’
Ti+1 _
z—i”f ["i'"(f1+fz)+2 T (fx+f2)]x, @, dx’
+ %(<ﬂ1+151 - </’151+1)/ (fi - fo) dx’ — 515 (1 +12) 194,
0
(A18)

909 J. Math. Phys., Vol. 19, No. 4, Aprit 1978

where fy and f; are slowly varying functions.

Using up the above relations for the primitive P of
(A1) we get

P:f f(O)(PlQ—DI dx,+%<¢l+l¢l" %EM)

¥ 1 4p? , 1 -
Xf (B“” —CW™_ = dx’ — = Dmfﬂzﬁﬂm
0

1 D(O) .
-5 (B“”+c‘°’+1 dd )(p,(p,, (A19)
0 _ a0y €+ 1 d
U =AT+D +|:wx +2wdx
0
X(B(O) +C‘°’+% dgx ) (A20)

Now using (A3) one can verify the equality (by
derivation of both sides)

X
/ V09, dx’

1 20+1) (7 , _
== [ftm -2 )[ £ gy J (0101P1+ 9,8 141)
0

¥ co1 “Ia
+%f f“”dx’(go,(p,-#%.lqﬂ“l)—m’/‘ [3; (f(m
0

X
2(+1) — -
T f f(o) dx”) (Prae + (ﬂz(Put)]r' dx
0

(A21)
Then from (A19) and the above equality, one obtains

I= [0(0)(/’19751 + bm)é”maz + C(m‘pz_‘ﬁm +d(0)‘ﬂz+151+1]:
2(1+1)

Ll m
—4wa [dx(f T«

Xf f(O) dx”> ((pl«‘l‘_ﬁt"' 901‘7101)} dX', (AZZ)
0 x
a‘°’=%f xf(mdx’— = [B(°)+C(°’+ 1 dD(O)] )
0 w dx
1 20+1) [ 7
o _ 1 | ) 3.1
== [f ~ fo f dx]
* 1 4p'®
+§f (19“”-0“”-a o ) ax’, (A23)

0

d(O) f f(O) dx’ .

The integral in the rhs of (A22) belongs to the original
type (Al); however its coefficients exhibit (at least) a
factor 1/w in comparison with the original coefficients
AW BO g po

, .

s
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A similar approach can be applied to this integral,
and so on, for the successive approximations. The mth
approximation is formally written as (A7) in which

A(mi) :D(’”l’ =0’
1 200+ )
B(n+1):C(n+1) —_ ‘_1_03 .dg}; [f(n) - (lx 1) / f(n) dxl] ,
0

(A24)

and '™V, p™D | ™D ang @™ are related to ™
and B by the same relationships (A23) which connect
a® b c® and d9 to f, B, where formally one
sets cth :B(O), DWW =0.

Once again it must be verified that the successive
approximations are convergent for x —0 in the cases of
interest. To this aim we make the following assump-
tions analogous to (4), (5), and (6).

(1 A", B, ¢, and D'® are majorized by a con-
stant C together with their derivatives up to a certain
order g, respectively, in the intervals 0 < x < x(¥)
when x =W, or W, and 0= x = W () — W(»,) when
x= Ws - Ws(7’0)°

(8) A® and D'® behave as even functions for x -0,
whereas B'” and C'™ behave as odd functions in the
same limit,

(9) The coefficients A'®, B® C'® and D'© are
analytical in a neighborhood of » =0, or v =7, accord-
ing to whether the first or the second interval is
considered. !

Then one easily proves by induction that f ™ gl

™, ™ g™, and B =" for n < ¢ are majorized
by a constant C in the intervals considered in (6),
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according to the specifications made there; in addition
b, ¢ and f‘™ have an even character for x — 0,
where ¢, d'™, and B =C“"*D have an odd charac-
ter in the same limit.

Ip. Cazzola, L. Lucaroni, and R. Semenzato, J. Math. Phys.
19, 237 (1978).

For the definition of Wy, W, see (1.3.19) [paper Iabove, Eq.
(3.19)1.

3P. Cazzola and L. Lucaroni, Phys. Rev. D 6, 950 (1972).

‘R.G. Newton, J. Math. Phys. 1, 319 (1960),
5T. Regge, Nuovo Cimento 9, 295 (1958).

SHere and in the following C or Cy, C,,- -+ denote positive
w~independent constants.

"One easily verifies that the normalization for z defined in (3)
in the limit »— 0 coincides with the one given by (5.1) and
(5.3).

®Equation (6.7) holds with the exception of those values of w
in the real axis for which n{®(+y) vanishes; but these never
coincide with the eigenfrequencies in which we are interested.
L, Battiston, P. Cazzola, and L. Lucaroni, Nuovo Cimento
B3, 295 (1971),

Y0%e note that 2) can be verified by inspection, whereas &},
&%, A, v are even functions of » in a neighborhood of =0 as
a consequence of the equilibrium equations. 3) follows from
the above statement and from the definite parity character
of the coefficients of the coupled equations (I.2.10) and
(1.2.23).

yor the integrals involved in our problem 4), 7) can be
verified by inspection. As regards 5), 6), 8), 9) it is evident
that, even if they do not hold, the above formulas are valid
up to a certain order of approximation such that, at any step,
the coefficients of the cited byproducts in the remainders
are finite. Since in the calculation of the integrals involved
in Secs. 5 and 7 it is sufficient to consider the lowest order
approximations, we can see hy inspection that the above con-
ditions are satisfied. The remainders are then majorized
according to standard procedures developed in paper I or in
Sec. 3, and are shown to be negligible.
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Making two assumptions regarding the analytical continuation of the external solution to the region
Ime <0, we give the asymptotic distribution for w—oo of the eigenfrequencies of a hot perfect fluid
relativistic neutron star. It results that the real parts of the complex eigenfrequencies grow as the integers,

while their imaginary parts grow as Injw | with coefficients depending inversely on the “optical path” of

the uncoupled gravitational waves through the star.

1. INTRODUCTION

In a previous paper, ! hereafter referred to as I, we
set up two systems of integral equations for even parity
perturbations of perfect fluid neutron stars; their solu-
tions describe coupled sound and gravitational waves of
given frequency w, in the framework of a single multi-~
pole of order [ =2,

The two solutions of such equations are linearly com-
bined in order to obtain the physical solution (up to a
multiplicative constant) by the requirement that the
Lagrangian variation of the pressure vanishes on the
star surface.

In that paper we gave an argument suggesting that
the coupling between the two kinds of waves becomes
weaker and weaker for w— =, whereas the successive
iterations furnish successive approximations to the
solutions in such a limit.

In the present paper, we will prove this statement
and explicitly give the physically significant internal
solution for w—,

The linear combination expressing the physical solu-
tion u for the gravitational amplitude contains terms
whose absolute value is proportional to exp|Imew| W,.?
However, as a result of cancellations, the physical
solution can be rewritten as a linear combination of
terms whose order of magnitude is less than or equal
to exp!Imw| W, < exp|Imw| W,.2 A part of this paper is
devoted to the proof that such cancellations occur at
any order in the successive iterations. To this aim we
define here new “zero order iterations” which are given
by systems of integral equations including gravitational
and matter field “self-interactions.” In this way new
integral equations, which take into account only the
coupling between sound and gravitational waves, are
constructed and from them the physically significant

a7Supported in part by the Consiglio Nazionale delle Ricerche.
Y Present address: Department of Physics, University of
Chicago, Chicago, Ill. 60637,
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solution is derived. The advantage of this new method
lies in the fact that it makes it easier to prove the
aforementioned cancellations. After this proof is
worked out the computation of the dominant terms in
u which do not cancel turns out to be straightforward.

The significant internal solution allows us to deter-
mine the asymptotic distribution of the eigenfrequencies
in the upper w plane, provided two reasonable assump-
tions (whose validity will be the object of a subsequent
paper) is made on the analytical continuation of the ex-
ternal solution in the lower w plane.

In fact, the knowledge of such continuation is neces-
sary since the eigenfrequencies coincide with the zeroes
of W(- w), where W is the Wronskian function construct-
ed with the external and gravitational solution at the
star surface.? In the framework of the cited assump-
tions it is found that, in the region Imw >0, the distri-
bution turns out to be very similar to that of the poles
of the § matrix for the scattering of a particle in a po-
tential field in quantum mechanics, when the potential
is truncated or decreases at least more than any ex-
ponential, *»°

The plan of the paper is the following:

In Sec. 2 we give the modified integral equations for
the internal solutions, whose zero order iterations take
into account the sound and gravitational “self-
coupling.”

In Sec. 3 majorizations for such zero order iterations
are given,

In Sec. 4 the amplitudes which are needed in order

to construct the physical internal solution are suitably
majorized.

In Sec. 5 a representation of the internal physical
solution, suitable for the subsequent majorizations, is
given,

In Sec. 6 it is showed that the physical internal solu-
tion, for w—<, is a combination of terms whose order
of magnitude is less than or equal to exp!Imw|W,.
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In Sec. 7 the Wronskian function is constructed and
its leading terms for w—= are calculated; the asymp-
totic distribution of the eigenfrequencies is finally
derived.

In the Appendix we set up a method of successive
approximations for integrals appearing in Sec. 7.

2. MODIFIED INTEGRAL EQUATIONS FOR THE
INTERNAL SOLUTIONS

The symbols which are not defined in the present
context are defined in paper I.

Let us consider the following equation in U®),

[0y - ViUt =0, 2.1

where the linear differential operator O, - Vy, is the
one acting on the variable # in (I.2.10). Then let us
introduce the integral equations [whose solutions obey

(2. 1]

Ul = (°’+f g1 (r, ¥ )V UD),, dv’, (2.2)
U0 —l0 4 L; gy, V)V U, dv, (2.3)
udh = qbgﬁ,“”(xg), o=sign(Imw), (2.4

where ¢, is given by (1. 3.20) and x, = wW,, W, being
given by (I. 3.6); #'(x,), defined by (I. 3.22), satisfies
the inequality®

17 (xp)| < Cexp(= | Imw| WlL(|x, )}, (2.5)
where L(x)=x/(1+x).

U Ul are respectively regular and irregular for

r=0.
Similarly consider the following equation in H‘,
[0y - Vo JH'V =0, (2.6)

where the linear differential operator Oy - V,, is the one
acting on the variable 7 in (I. 2.23).

Let us introduce the integral equations [whose solu-
tions obey (2.6)]

HO =0 + [7 gy (r, ¥ W VauH "), a7, 2.7
H,=n% + fr;gz(v, P (Vo HEO,. dv, (2.8)
O = ¢ [9(r = EFIX) exp[- | Imw | W]

+8(r = e (x g + ¢ B (x D], (2.9

where ¢, X, W, W, are given respectively by (I. 3.21),
(I.A13), (1.3.8), and x,=wW; c,, c_ are determined by
imposing the continuity of 7o and of its derivative with
respect to 7 at the junction point . One verifies that

[0/

< Cexp(- | Imw|W,)

x{ 07 ~ VL x DI + 60 =L xDITT. (2.10)

HY and H are respectively regular and irregular
for »=0.

902 J. Math. Phys., Vol. 19, No. 4, April 1978

In comparison with paper I, U and H{® furnish new
zero-order iterations for solutions of the “gravitational”
and “matter field” type instead of «/", 7",

In principle they account exactly for the self-inter-
action terms Vyu and V,,m appearing in (I. 3. 3) and
(1.3.4).

To be more definite, we can construct new regular
solutions of the original Eqs. (I.2.10) and (I.2.23) de-
termined by the following systems of integral equations
{to be compared with (I. 3. 26) and (1. 3. 27)],

U( = U!(O) + j;)r Gl(r: T')(V12Hg)rl d’V,,

r (2.11)
H, = J;) Gy(r, 7”)(V21U,),.: dr’,
Us: j{‘)’ Gl(’r, y’)(VIZHS)r' d’y‘l,
r (2.12)
Hs:Hs(O) * j(; GZ(,V’ yl)(VZIUs)r' d1”,
y - JULNUR) - U6 HU )
Gylr,v) ==~ Wv ™, Um)] , (2.13)
HOMAHO ) = O (') O
Gylr, vy === (MH;(v') = H3 (') Hy"(v) (2.14)

[WHD; B,

where W(iy, iy) is the Wronskian constructed with i
and lpz.

3. MAJORIZATION OF U'Q, U'®), H, 41(®)

In the following, frequent use will made of inequali-
ties relative to the functions ¢,, ¢, implied in the de-
finitions of #/”, uf, n{¥, nf. These hold for w large
enough and are easily verified by inspection,

Cy <7, < Cy, (3.1
(3.2)

Successive iterations can be given for the Egs. (2.2),
(2.3)

Cy<rlp+p) it ¢ < C,.

U’(O.nd): j(‘)fgl(,r’ T’)(Vng(o'n))r' d’V', (3. 3)
U= 1 g, V) VU™, dr, (3.4)
UéO’O):u!(O), Uéﬂ.ﬂ):uém. (3.5)
Let us set

U0 = TO7L(| 2, )T expl | Imw | W, ], (3. 6a)
i, ) =gylo, ¥V (/) [L(| x, )] 04D

X expl | Imw | (W] - W,)], (3. 6b)
V=V expl(v = 0/2lo L1 x, )] (3. 6¢)

From (3. 3), (3.5), and (3. 6) one obtains
Ui = J;) gy, r)Vilr) dWgy fo g1y, 1) Vi (7p)dW

w

Furthermore by inspection one can see that Uy gien
=i, o gan_gqu, where uéo), Vu, £, are defined by
(1. 4 4), (1.4.7), (1.4.9). Then from (I.4.13), (1.4.14)

for ¥ <7 we obtam

N g (#pn, Y Vi (r)USD AW . (3.7)

- N, ’ c rr
lgy(v, ¥ Vislr )| <m; iUg(O'O)| <C. (3.8)
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From the above inequalities and (3.7) we get

cn+1wr;

3.9
{wl™n! 3.9

|ultm) <

and then from (3. 6a), by summation of all iterations,

| U] < CrL(]x,])]** expl | Imw | W, ]. (3.10)
In a similar way, introducing
U = 0O L(| %, D] exp(= | Imw|W,), (3. 11a)

(| DT expl| tme| (W, - W),
(3.11b)
(3.11¢)

45’1(7’, ¥) =gy(v, ") (L

Vip =V expl(v = V/2Jo {L(|x, )]

one can see by inspection that 2117'11 :§117n exp{2 1 Imw|
X (WL' - W;)})

so that, owing to (1. 4.13), one obtains

~ - C R
lgi(o, V)V (#) ] <m, r<v, (8.12)
and taking into account (2.5), (3.1), and (3. 11a) one
obtains

lg@0 | <c. (3.13)

Then, with the help of the above inequality, together
with (3.4) and (3. 12), with a procedure quite similar
to that outlined for USY, we get
(3.14)

[0} < er{L(]x )] exp(- | Imw| W,).

In an analogous way the successive iterations of
(2.7) and (2. 8) read

HOmD f &7, V)V HOM),, dr', (3.15)
O f &(r, ¥V (Vo HEO™),e dr, (3.16)
HOO =g @ 0.0 _ ) (3.17)
Then let us introduce
Hs(O) :ﬁs(O),V-l(p +P)1 /21,15/2{9(;_ v)[L(lxsl )]lcl
+0(r = P[LX T Vexpl | Imw | W], (3.18a)

AU

(o +p) {60 =iz (DI

&, ) =gr, v )

+ 60 = PL(X )V} expl | 1| (W] - )],

(3. 18b)
Vg = Ve 220 {007 - [ L(x )12 + 00 - ML (| X )T}
(3.18c)
and
HO = B0 Yo+ ) 200G -~ ) [L(| x, DI
+0(r - ML(XD]T} exp(— \Imw‘W (3.19a)
172,
a7 =20, ) SUELE S A - L,
+8(r - M[L(x])] }exp [Imw [(Ws- W),
(3. 19b)
903 J. Math. Phys., Vol. 19, No. 4, April 1978

Vyp = Vagexpl(v - A)/z]vs{[L( |xs])] 007 =~ 7)

+8(r - ML X )] (3.19¢)

Now one can verify that H‘O O=F{, g Ve =5V,

and
&V =2,V expl2|Imw | (W~ WD),

where 7%, V,,, and g, are defined by (1.4.5), (1.4.8),
and (1. 4, 10). Then from (I, 4. 13) and (1. 4. 14) it follows

that:
- INTr ’ C I3
lgo(r, ¥ ) Va0 | <I_w_l’ v <, (3.20)
» Nty ’ C ’
| ga(o, v )ng(r)l <m, r<v', (3.21)
|HOO | <. (3.22)

In addition, an inequality similar to (3.13) is easily
derived,

|HOO] <C (3.23)

Finally, with a procedure similar to that outlined in
order to obtain (3. 10) and (3. 14), we get

B9 < Cort(wy - wH{a0r - ILL( I

+6(r = ML X expl | 1mw| W), (3.24)
| < Crt(Wy = W {07 - ) L(|x,) ]
+8(r - n)[L \Xl) "}exp(— \Imw]W (3.25)

4. MAJORIZATIONS OF H,, H;

A program parallel to that of Sec. 4 of paper I can
now be developed for the coupled integral equations
(2.11) and (2.12); however, in the present context, we
are interested only in the amplitudes H. Let us set

H:H~1"1(p ‘i—P)1 /21)2/2{9(;* 'V)[L(lxst )]“1

+0(r =ML X ]} expl | 1maw | W], (4.1)
U=0rL(}x,])}* exp] | Imw| W] {4.2)
1(7’ 7") =Gy, ’V)—r L(|x ‘) “*”exp lImwl We— W,

(4.3)
172,172,
G {7, 7'} = Gy, 7)o 7 exp [ Imw | (W] - W )][(‘();f;) vs/Jr
L2 D100 - 1) + 80 = DL X ]}
(4.4)
We want to prove now that

~ ’ i ’ C
]G1(7’,7’)V12(7)i<w, {4.5)

5 NG g c
}62(7’,7’)1721(7’)}(‘*[‘5, (4.8

where Vn, V21 are defined by (1.4.7), (1.4.8).

In order to do this it is necessary to give suitable
majorizations of Gy{r,7) and G,(7, '), given by (2.13)
and (2.14), and therefore, among other things, to as-
sign minorizations of the Wronskians appearing in
them.
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From (2.2) and (2. 3) one gets

W(U(O). U(O))
(O)VnU(O)

( I -1
( >’ Uy >)[1+ /0 —7—[—‘—-——exp = 9)/2

(O)V U(O)

-1
-@ ,/,,0 »% exp] ( —v)/2
w-sz uqO)VnU(O) /‘ u(ﬂ)V U(O)
o ¢5exp[(x 0721 2expl(x 7214

IR /e S S0 /‘ U(O)
-2 11 l

T /o ¢zexp (A—v)/z - ¢,zexp|()\ v)/2 d"]
4.7

Taking into account the inequality |V;| < C, quoted
in the appendix of paper I, and making use of (3 1),
(3.6a), (3.8), (3.11a), (3.13), and (3. 14) one obtains

|ww®; u®) (4.8)

o2l

In a similar way one can minorize the Wronskian
appearing in G,(r, »') making use of (3.2), (3.18a),
(3.22), (3.19a), (3.23), (3.24), and (3.25) together with
(1.3.15)

W(H®; Hi®) w(ns®; no‘"’)(l +%>

——w zexp(X—-V)/Z] lQl/ic

Us

(4.9

WD B - o )],

Taking into account that Vyy and Vy,, given by (1. 3.11),
are respectively proportional to (p+p)w™ and w™?, from
(3.10), (3. 14), (3.24), (3.25), (4. 8), and (4.9), we
straightforwardly get the inequalities (4. 5) and (4. 6),

Comparing (4. 1), (4.2) respectively with (3. 18a),
(3.6a) we get by means of (3.24), (3. 10),

'1}’;0)‘ =IH®| < C (4.10)

[T = 1T L)/ L0 2, D expl | 1moo | (W, - W)
cQC. (4.11)

Finally from (2. 11), (2. 12) together with (4.1), (4. 2),
one gets

N 1-( )" Vs
Hg(n):____z—___f Gy, ’)’1)V21(7’1)dws1
0
Wy ~
X f G1(7’1, Vg)V1z(7’2) dWsz Tt
0
Ws,1 ~
/ Gz( nals 7 )VZI(’V )U‘O)('V ) dWs ’ (4.12)
0
~ n S ~ e
Hs(n)zl_%—ll f Gy(r, 1’1)V21(7’1)dwsl
0
Wy o ~
x/ Gy(ry, Vz)Vlz(VZ)dW% t
0
Wsnul ~ >
f Cy(roa, 7 )Vles(O)(T") dWsn- (4.13)
0

From these and from (4. 5), (4. 6), (4. 10), and (4. 11)
it follows that
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criyn
| -
|H | n, ‘w{ n+l » (4. 14)
~ lewn
) S
IHS I ﬂ!‘wl n (4. 15)
and then, in analogy with (I. 4. 16),
= HY 1 1/2,1/2f o 141
217 e e +p) R {00 - MIL(|x,))]
n=m Hs(n) _
+[L(|X )] 8(r - )} expl | Imw [W,]
cmiym Ccw,
Xl 20 =70 .
il Twl™ o (le) (4.16)

5. REPRESENTATION OF THE PHYSICAL SOLUTION

In analogy with (1. 3. 30), (I. 3. 31), and (I. 3. 32), the
physical solution can be alternatively written as’

H:U"l"ﬂlU‘” (5. 1)
77=H,+I11Hs, (52)
- (Hg/Hs)roy (5- 3)

it follows that

1
u=(Hr)U, - Uﬁ,(ro))m

(Y )Z) z_, (HE(r)U S~ = U HID (r)]. (5.4)

s\ 0/ n=0 j=0

Now {4.12) and (4. 13) imply the relations HF" = g#mD
=0, which also lead to UZ™1 =U{¥™ =0 by iteration of
(2.11) and (2.12). Then we get

2n-1

U= L [G(Zn— 1)(73 HI Ul
s( o P

- Z, v¥ >H‘3"-“(ro)> + H}Z"’(YO)U,‘O’J . (5.5)

=1
Introducing in (5.5) the iterations of (2.11) and (2. 12)
for U, and U, we further obtain

u=U" +5,8"), (5.6)
n=1
r
n) ’ ’ A(Znul) ’ ’ .
S H (7’0)‘/ Gl('r, r )VIZ(T ) ('VO, 4 )d’}’ b (5 7)
A(")(‘r P )—L/ [H‘z“(r H(Zn-zj 1)(1,')
=0
- HE " YBIH D (), (5.8)

Now, as stated in Sec. 1, we want to show that « is
proportional to exp|Imw W, despite the fact that most
of the terms appearing in it behave like exp|Imw|W,,
In order to do this a suitable representation of the ex-
pressions in the square brackets is necessary.

Let us define
OH(O)V U(O)

k=~ —(;fwr—"mr)dr', (5.9
0
n HO@WHD (v )V, (v
Lr,7") = [SWEHS‘U’G; e (5. 10)
, H(0)<’I’)H(0)(’V')V (’V')
12(1", = uIW(Hga); HEU))Z]ITI R (5.11)
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AR = [ L, U0 dr

+ [T L, VUG ar (5.12)
f) = [ Gy, ¥ Vi fi,e ar, (5.13)
Faa) = [0, ) fonlr ) 7!
+ [T L, ) fealr A7, (5.14)
Fanst®) = [ G, ¥ (Vig faned)r @' (5.15)
From (5.9)—(5.12) we get
fo' Golr, 7Y (VUMY dr' =kHD + 1. (5.16)

Then for the terms H ) (»)HE"2-1)(y) appearing in
(5.8), taking into account (5.16), we can write

HéO)(,ro)Hg(Zn-l)
=HO (rkHED + HO (vy)
X for Gy(7r, 7) Vs (1) dry forl Gy(ry, 1) Vip(ra) dry - -

fOTZn-S Gl(yZn-Sy 72;1-2)(V12f1)r2n_2 ern-Z! (5. 17)

H§2)(7’0)H;2n'3)
:Héz)(')’o)kHézn"i) + Héz)('yo) fof Gz(’y, 1’1) VZI(/VI) dv

r
X _fgrl Gy(ryr)Vilmy) dry = =+ [ Gylrgy 5, 720d)

(Vie ey, 4 @20 (5.18)

G0 ® " w8 e 00 e BO PO eaes s e sttt te a0 H 0

Hézn-4)(70)H;3)

=kHE D (rdHY + HEO(r) [ Gy, 1) (Vig fi)yy dy,
(5.19)

HED(r)HD = kHE D (r)H + HE ) ry) fy. (5.20)

Quite similar relations can be obtained for the coun-
terterms in (5. 8) from the above ones by means of the
exchange ¥ — 7, in the arguments of H{" and f;. In the
sum appearing in (5. 8), terms and counterterms pro-
portional to k cancel one another; more precisely, the
first term cancels the last counterterm, the second
term cancels the last but one counterterm, and so on.
The sum of the remaining terms can be written as

HED () f = HE ()
n=3
+[73 (HED (g HEnH-5) -Hg"’H,a"'“'s’(ro))] o
3=0 U, <
(5.21)

where it is understood that the formal replacement
U~ f, has to be made in the integrals expressing any
Hj“’u The sum appearing in the above expression is
similar to that relative to (5. 8) with the substitution
n-mn-1, Taking into account (5.14) and (5. 15) at any
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step we finally obtain

A rg, v

n=l
) =2, (Hion-i-t )(Vo)fz;n(yl)
=0

- B0 0(r) f,04(7g)), (5.22)
which, by means of (5.6) and (5.7), allows us to get
the final expression for u.

6. MAJORIZATION FOR s/

From (5.10) and (5. 11) together with (3. 10), (3. 24),
(3.25), and (4. 8) one gets

oc17’

<= (%, ) P+ expl | 1mw | W, ], (6.1)

!f1(7’)|

where C; denotes a determination of the constant C ap-
pearing in (3.10).

Now from (3. 10), (3. 14), and (4. 8) we obtain a majori-
zation for G,(7, ') which is the same as (I. A6); making

use of such majorization together with | V| <Clwl™?
in (5. 13), we can write

ccczr

\fZ 'V)\ i IE L(lx(‘)]“l eXpHImw\W,]. (6.2)
The majorization procedure can now be extended
straightforwardly to (5. 14),
on#l
L% D" explImw W,
C C((CCy)" Cinel
11@5 T {6.3)

where C is the largest constant among Cy, C,, and C,.

Again taking into account the above cited majorizations
for G,(»,7'), Vi, and making use of (6. 3), (4. 15), (4. 1),
(3.10), and {5.7), one gets

[

exp[ {Imw | (W, + W)]
IHS(T(,) ! )

From the above inequality and from (5. 6) it follows
that

(6.4)

<L

2 s < Cs( [L() % ) expl | Tmeo | (W, + W]
wam
xc<—i1+l"—>, (6.5)
(1-8°"1-¢
£E=C/|wl®. (6.86)
From the results of Secs. 3 and 4 it follows that®
Hr) *HO (ry) =i (ry), (8.7)

and then from the explicit evaluation of 7{(r;) by means
of (1.3.18),

C exp| | Imw | W]

|Hor | = [ 2@y | = Tt

(6. 8)
So from (6. 4), (6.7), and (6.8) one sees that u near the

star surface 1s proportional to exp[ | Imw|W, (ro)] times
powers of w!
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7. ZEROES OF THE WRONSKIAN

Let us now consider the Wronskian W(x, #_), whose
zeroes give the eigenfrequencies of the star,

From (5.6)—(5. 8), recalling the transformation prop-
erty of the Wronskian for two independent solutions of
a second order linear differential equation, we obtain

Wu, u_)

= W(U(O) Zl_) - m
s\

o (Zt VIZ nA (’}"
X2 - // & Ay d
_/1,/0 exp(h B,(*") dr”)
where B, is the coefficient of «#” in (I.2.10). The ex-
ternal amplitude «_ is defined by the integral equation
(I.5. 3) only for Imw > 0, so that the analytical continua-

tion of «_ to the region Imw < 0 is necessary in order
to evaluate W(u, u_) everywhere.

(7.1)

Making use of (I. 5. 3) and recalling that U® and «®

are respectively solutions of (2. 1) and (I. 3. 16), we get
WU, u) =Wl u®) |1 [ Eg”l:] , (7.2)
MNw=-w f V“u rn (7.3)
Wiy, ,u

As shown in paper I, in the region Imw > 0 we have

. =ul" +o@!?), w--, (7.4)

Recalling the definition of u”, u_and using a standard
relation between Bessel functions of order ! we get

W lD; 1!®) =~ wel exp[(r-v)/2].

Moreover, introducing for them majorizations similar
to (3.10) and (3. 14) we obtain for Imw= 0

IT(w)| <C,

(7.5)

(7.6)

W=,

Let us now assume that the above inequality, together
with (7. 3), also holds for Imw < 0.

The proof of the validity of such assumptions rests
on the possibility of analytical continuation of #_ and
will be the object of another paper. The extension of
(7. 4) to the half-plane Imw < 0 amounts to stating that
the asymptotic expression of the analytical continuation

is given by the continuation of the asymptotic expression.

We report the results of the asymptotic calculation
of the term n=1; this is obtained with the help of in-
tegration techniques developed in the Appendix, together
with the following equality (which derives from standard
relations among Bessel functions),

775 (01)4-1 Tléoz)u"l“” ——y exp[(V -~ )\)/2] 7.7)

W(ném: Mo ) ¢ w

where
770(?1) aQ= ¢s{9('r‘ ;) exp(" l Imw] Wo)ﬁ;('?l (X)
+0(r = MmN e ) + e i (x )T} (7.8)

We express A®(y, »') by means of (5.22), taking
n=1, j=0, together with (5.10)—(5. 12).
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Let us write

AV, vy = AV, 7Y + R, v'); (7.9

() ; ‘ imati
Ay is the “zero order approximation” for A% in the

sense specified in the Appendix, evaluated with the
substitutions

(0, 770,00 _ (0
Ug’ Ug = )s Ua(o)"

(0) __ g7€0,0
HO ~ g0 _ pt0)

0,0) __ (0
Us )——uu ),

HE ~ g0 _ O (7.10)

In the numerators of (5, 10) and (5. 11).

RMv, »") is comprehensive both of the higher order
iterations describing self-interactions and of remainders
to integrals involved in (5. 12) together with (7. 10) and
(7.11).

Similar considerations can be also made for the suc-
cessive integral I®) implied in (7. 1) in the case n=1;
again its zero order approximation /& is obtained by
means of the substitution AV (') ~ AP (x, ') together
with the substitutions (7. 10) in the numerator of G,(#, #'),
given by (2. 13).

Using (3. 10), (3. 14), (3. 24), (3. 25), (4. 8), (4. 9), and
(3. 9) together with analogous relations for U™, H&®™,
HY™ it is long, but without difficulties and completely
inthe spirit of the majorization procedures outlined in
Sec. 3, to show that the following quantities are negli-
gible for w—= in the expression between brackets in
(7.1):

(i) The integral implying R{V(r, +");

(ii) The remainder to /{!’ in the sense of the Appendix;

(iii) The contributions to I’ arising from the neglect-
ed terms in G,(7, '), which describe self-interactions;

(iv) The overall contribution ¥ 2,7/, arising from
terms of order n> 1;

The calculations lead to

1(1) z](()l)

1
ST °’¢g[],<x ( 1) -

+Jl+1(x )(h,,l(x )~ [+1 R (x )>]

!

Lnea, )

6'

Wetrg)
Vi Vosvs exp(v = A)
X

fo = oow@ED, 8 Ve (7.11

So let us introduce (7. 11) together with (4. 9) and
(6.7) in (7.1) and replace for 2"(x,) and j (x,) (v =1,
1 +1) their asymptotic expressions for xg— =,

Then, recalling that Vy,V, ~w™® and changing sign to
w according to the final remark made in Sec. 1, in the
framework of the assumptions we have done, we con-
clude that the asymptotic eigenfrequencies of the star
are given by the equation

1 +—£)—rrexp[— 2iwW, (7)) = (7.12)

where the real w-independent constant « is given by
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a:(_ 1)11-

41 (exp[(V - x)/z])
2 w3

Ve o lim,, . Vs Var©®) exp[3(v - 1)/2]
Xfo oA /v = 1] We.

(7.13)

The zeroes of (7.12) are symmetrically distributed
with respect to the imaginary axis, and for Rew >0 are
asymptotically given by

_(@n+3)n+arga

A2 2] T o 7.14
Rew" 2Wg('}’o) ’ ( )
_11IniRew,l Rew,| = Inla|
Imw, = 2WL,(1’0) ’ (7- 15)

where #n is an arbitrary integer such that the rhs of

(7. 14) is positive. As seen from the above results, the
dependence of the w,’s on the coupling between the sound
and the gravitational waves (contained in @) is weak.

8. FINAL REMARKS

The eigenfrequencies are equally spaced with respect
to the real axis of the w plane and are distributed along
a logarithmic curve.

This is also the case for the energy eigenvalues of a
particle in a spherically symmetric truncated potential
in wave mechanics.’

It is easy to see that a similar distribution also oc-
curs in the simpler case of a system® made of two uni-
form parallel strings of different nature coupled to-
gether with transversal uniformly distributed identical
springs according to Fig. 1, where A, B, and C are
fixed points and string 1 is indefinite towards the right.

The system can be compared with a neutron star
radiating gravitational waves; to be definite, strings
1 and 2 can be respectively compared with the physical
space (thought of as the medium which propagates the
gravitational radiation) and the matter in the star
(through which sound waves are propagated). We note
that in our case the asymptotic distribution of the eigen-
frequencies depends on the equilibrium structure es~
sentially through W,(#;), which can be interpreted as
the optical path of the (uncoupled) gravitational waves
throughout the star. With the constant « is associated
only a finite “displacement,” which is the same for the
various eigenfrequencies.

Another observation, which may be relevant for the
completeness of eigenmodes, is that the asymptotic
zZeroes are simple,

APPENDIX

The aim of this appendix is to give a method of suc-
cessive approximations for large values of w!, for
integrals which are involved in the iterations for U, H;

A B
FIG. 1. Coupled springs simulating the interaction of the
gravitational field with the neutron star matter,
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these belong to the general type
I= fux [A9 9, (W) ) (W) + BP0, (0d) 0y (0By)

+ C(O)(pt(wq>1) az'q(wq)z) + D(O) @,,1((.0@1) 61%1 (wq’z)]x' dxl’
(AlL)

where a=0 or = respectively, for internal and external
solutions, @.5, @1esy (j,j1=0,1) denote the product of
spherical Bessel functions of order I +j, I’ +j, times
their respective arguments w@; and wd;, &; and &,
being functions of x only; A'®, B C'© and D'© are
functions of ¥ and w; we assume that in the limit w —<
these are “slowly varying” functions of x, compared
with @,,;, ®;n; which exhibit an exponential behavior
of the type exp(iwd,); it must be understood that ¢,
and ¢;,; are constructed with Bessel functions of the
same kind, namely the coefficients of the linear com-
bination expressing ¢,,, in terms of j,,; and n,,;, are
the same as those relative to the linear combination
expressing ¢, in terms of j,, »n;; similarly, ¢, and
@y are of the same kind (though this may be different
from that relative to ¢,, ¢,,1). Let us first consider
the case &y # &;, to be distinguished from the case
&= &,. For the primitive relative to the integral (Al)
we shall tentatively assume a form similar to the
integrand

p =a(plal' + bahl(pl' + C¢15m1 +d¢1o1¢1'#1 3 (AZ)

where a, b, ¢, and d are to be determined by a method
of successive approximations. Owing to a property of
Bessel functions, we have

de ds 1+1
hdh o Dt 4 O i
dx ~ ¥ dx ( P g, w,) ’
(A3
d%q:wg_'gl( A2 > )

dx dx P wdy OV

and similar relations for ¢,., Fp‘,.q. Then the derivative
of P with respect to x can be written as a sum S of
terms, originating from the first terms in the rhs’s
of (A3) (explicitly proportional to w), plus other terms
whose sum we denote by - T.

In our problem, in the interval 0 <» <%, we have the
casel’'=l, & =W,, & =W in such case we choose the
zero order approximation a'”, 59 ¢© and d'® for
a, b, c, and d identifying S with the integrand of (A1);
in this way one gets

a(O) = (wF)'i(d'){B(O) - <I>£C‘°’)
b — (UJF)'I((I){A(O) + <I>2'D(0))

(A4)
C(O) =((.0F)-1(4>{D(0) +<§£A(O))
d(O) — (wF)d(q){c(O) - @{B(O)),
dd ad
F=(3f - @), s{=""1, #i= T (A5)
I= [a(O) (9161 + b“”wm@ + C(O)"/’zaui
+d' 000+ [T Tdr. (A6)

Now the integral in the rhs of the above equality has
a structure which is similar to that of the original
integral (A1l); however its coefficients, compared with
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A BY ' and D', exhibit an explicit factor
1/w as seen from {A4); we can therefore apply a simi-
lar procedure to such an integral, and so on, In this
way one obtains a method of successive approximations
for I when lw! is large. The mth approximation is
written as:

m
I=ngz;0 [a(")%% + b(n)(ﬂzd(pl + C(n)(ﬂz@hi + d(’”wmam]z

4+ fa" [A(m\‘i)(pl‘(p‘Z +B(m¢1)¢l+1'¢‘l

+C(”“1)<p1“<ﬁlq +D(m1)(¢7141§~91*1]dx” (A7)
a(mi) -~ (wF)-l ((I){B(n-i-l) _ ézlc(mi)),
b(ml) —— (wF)-i (q){A(ml) + (}éD(Mi)), (A8)
C(mi) :(wF)-l(é{D(m“ 4 @éA"”“),
d(mi) —_— (wF)‘i(tbi’C("””-— q)zlE(nti)),
n (n)
Al (dgx +T‘a(n)> , clmh —_ dcclx +T_C<n)> ,
(A9)
tneD) dp'm () (ne1) dd‘™ m
B _(dx T.b ) D :_(dx —T+d">,
1+1 1+1 (A10)
T, = 5= $l+ —m )
+ &y it @2 ¢‘2’

where the integral in the rhs of (A7) is the remainder
of order m of the development of I into successive
approximations; an overall factor 1/0™! can be ex-
tracted from it.

The question ig left whether the integrals of type (Al)
are convergent in the case of interest. To this aim
some observations and assumptions, bedaring on the
structure of &;, &, A®, B®, ¢® and D'”, are
necessary. We note that &{, &}, given by (A5) are re-
spectively equal to exp( - v)/2, [exp(\ - v)/2]/v,,
where v, is the velocity of sound; &{, &}, for a neutron
star, are finite, different from zero and from one
another, so that F, given by (A5) satisfies the inequal-
ity 11/Fi<C.

Now let us make the following assumptions:

(1) The equation of state is such that &{, &5, A, v
are analytical in » for »=0.

@) A® BO ¢ and D' are majorized by a con-
stant C, for 0 <y <y, together with their derivatives
with respect to » up to a certain order gq.

(3) A'® and D'® are even functions of » for » ~ 0,
whereas B and C‘® are odd.*°

From (1) we conclude that 7_, as given by (A10), in
the case under examination (I’ =1), is an odd function
of 7 and vanishes as v for » — Q.

From (A8) and (A9), and from the above assumptions
and results one proves by induction that a'”, '™, ¢,
am, A el o Fand DY are majorized by a
constant C for 0 < <%, n<q and that 5™, ¢™, ATV
and D™ are even functions of v for » —0, whereas,
a(n)’ d("), B(n+1), and cimh are odd.
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Let us further consider the case [ =1', &;= w,,
By=x=W, - W,ry), ¥ <¥ <7, which is also involved
in our problem; in this case the Bessel functions with
index [, I+ 1 may diverge respectively as x~!, x~**1
on the star surface. However, these are always multi-
plied by coefficients containing a factor x* with
o=]+1,

With reference to (A1) let us write such coefficients
in the form:

) _ A0, o
A —f1 X,

C(D) :féo)xa ,

B(O) :__féo)xa’
DO = {0y
With reference to the primitive (A2) we set

a=ax*, b=bx®, c=cx*, d=dx°. (A11)

In order to determine the lowest order approximation
a®, 3, &9 and d'©, we formally write @, b, ¢, and
d in the form

a=2 am, b=2 5",
" § (A12)

o)
I

. Z‘ (j(n) EZZ E(n)
n ’ n '

Let us further replace (A11) and (A12) into the deriva-
tive with respect to x of (A2), and equate the coefficients
of @.; ¢1.5, (4,75 =0,1) relative to the largest power
of w in such a derivative with the analogous coefficients
in the integrand of (Al).

In this way we obtain:

0 _ (D) o o
0 _ Usla = f3 g __ S TUshy
- wF ! - wF ’
(A13)
() o ) (0)
s _fi Uy 70 _ Ja = Usfs
’ wF ? WF :

Then the integral I can be written as

(5(0)%57 +5(0)§01+157+E(0)901—(57w1 +‘7(0)90m‘957+1)xa
x — e p—
+J; [ (P 0,07+ 01107 T £5V 0,07
+f4(1)(pl+1a'i+1)]x' d?(', (A14)
where:
1 [ oV =" <z+1 I+1
y _ _ L/ 3 +
f1 w [ F ng Us 2 X
+ 4 <1’§£2.(_01:l§(_01)]
dx F ’
£ 1 [f4(0) + o 1 (2 I+1 11 p>
T Ty F x w, s
L4 (M)]
dx F ’
f(l) — _]; ‘:l +1 » _fi(o) hs v&f;m + j_i_ (f1(0) + 1lsf4(0) )]
8 wlw, s F dx F ’
f(i):_ —1_ [l+1 ; 1',5-1:3(0) _f2(0) _‘_11_ <f2(0)_vsf3(0)>—‘
¢ wlw, s F dx F 1
{A15)

The integral in the rhs of {A14) belongs to the same
type as (Al); however, its coefficients, compared to
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those of (A1), contain an additional factor 1/w; we can
thus set up a method of successive approximations for
I for large values of |w! by treating such an integral
in a way similar to the previous one, and so on. The
mth approximation reads

m — — — —_
l=n§% [xa(a(n)(pl(p?+ b(")whi(pf_*—c(")(pl(ﬂﬁl

+d™ 9,1 @01.4) 5+ f;x[x“(f1('"m 101+ 0,07
"D 0,054 ™0 011 914) ] di, (A16)

where £{™1 are related to f,™ (k,j=1,2,3,4) by the
same relationships as those between £, and £,
namely (A15); a™, 5, ¢, and d™ are formally
obtained from (A13) w1th the substitution of the index
(0) with the index (#)., Also in this case it must be
verified that the successive approximations and their
remainders are finite in the range of interest
Y¥<r<wy.

To this aim let us assume that:

(4) £,{” are majorized by a constant C together with
their derivatives up to a certain order g¢.

(5) A" and 7{? behave like even functions of x in the
limit x — 0, whereas £ and 7" behave like odd func-
tions in the same limit,

{6) /¥ are analytical in » in a certain neighborhood
of r=w.

It easily follows by induction from (A13) and (A15)
that a™, 5™, ¢ 4 and 7™ are majorized by a
constant C for n < <q, in addltlonfi"”“ D e and
d‘™ behave like even function of x for x —~ 0, whereas
Famb gD gm Cand d behave like odd functions in
the same limit for n<g¢,

Let us finally give a similar approach for integrals
of type (A1) with &4 = &,; for the purpose of the present
paper it will be enough to consider the case /=1’. Since
the coefficients AV, BY 'O and D'© are arbitary,
we assume the variable x to coincide with &; = &,.

First of all, integrating the last term of (A1) by
parts we obtain, by means of (A3),

x X 0)
— 1 dapD —
f D(O)Wni‘puidx':;f “ax Py P dx’
X
_ 1 -
+ j D(O)‘pl‘pl dx’ — Zo_ D(O)(pl(p”'1 ,

(A17)

moreover, recalling that, owing to a property of Bessel
functions, the expression ¢,¢,.; - ¢,¢,, is a constant,
again with the help of (A3), one obtains by further
partial integrations

f (/190119 +/20:91.4) dx’
Ti+1 _
z—i”f ["i'"(f1+fz)+2 T (fx+f2)]x, @, dx’
+ %(<ﬂ1+151 - </’151+1)/ (fi - fo) dx’ — 515 (1 +12) 194,
0
(A18)
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where fy and f; are slowly varying functions.

Using up the above relations for the primitive P of
(A1) we get

P:f f(O)(PlQ—DI dx,+%<¢l+l¢l" %EM)

¥ 1 4p? , 1 -
Xf (B“” —CW™_ = dx’ — = Dmfﬂzﬁﬂm
0

1 D(O) .
-5 (B“”+c‘°’+1 dd )(p,(p,, (A19)
0 _ a0y €+ 1 d
U =AT+D +|:wx +2wdx
0
X(B(O) +C‘°’+% dgx ) (A20)

Now using (A3) one can verify the equality (by
derivation of both sides)

X
/ V09, dx’

1 20+1) (7 , _
== [ftm -2 )[ £ gy J (0101P1+ 9,8 141)
0

¥ co1 “Ia
+%f f“”dx’(go,(p,-#%.lqﬂ“l)—m’/‘ [3; (f(m
0

X
2(+1) — -
T f f(o) dx”) (Prae + (ﬂz(Put)]r' dx
0

(A21)
Then from (A19) and the above equality, one obtains

I= [0(0)(/’19751 + bm)é”maz + C(m‘pz_‘ﬁm +d(0)‘ﬂz+151+1]:
2(1+1)

Ll m
—4wa [dx(f T«

Xf f(O) dx”> ((pl«‘l‘_ﬁt"' 901‘7101)} dX', (AZZ)
0 x
a‘°’=%f xf(mdx’— = [B(°)+C(°’+ 1 dD(O)] )
0 w dx
1 20+1) [ 7
o _ 1 | ) 3.1
== [f ~ fo f dx]
* 1 4p'®
+§f (19“”-0“”-a o ) ax’, (A23)

0

d(O) f f(O) dx’ .

The integral in the rhs of (A22) belongs to the original
type (Al); however its coefficients exhibit (at least) a
factor 1/w in comparison with the original coefficients
AW BO g po

, .

s
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A similar approach can be applied to this integral,
and so on, for the successive approximations. The mth
approximation is formally written as (A7) in which

A(mi) :D(’”l’ =0’
1 200+ )
B(n+1):C(n+1) —_ ‘_1_03 .dg}; [f(n) - (lx 1) / f(n) dxl] ,
0

(A24)

and '™V, p™D | ™D ang @™ are related to ™
and B by the same relationships (A23) which connect
a® b c® and d9 to f, B, where formally one
sets cth :B(O), DWW =0.

Once again it must be verified that the successive
approximations are convergent for x —0 in the cases of
interest. To this aim we make the following assump-
tions analogous to (4), (5), and (6).

(1 A", B, ¢, and D'® are majorized by a con-
stant C together with their derivatives up to a certain
order g, respectively, in the intervals 0 < x < x(¥)
when x =W, or W, and 0= x = W () — W(»,) when
x= Ws - Ws(7’0)°

(8) A® and D'® behave as even functions for x -0,
whereas B'” and C'™ behave as odd functions in the
same limit,

(9) The coefficients A'®, B® C'® and D'© are
analytical in a neighborhood of » =0, or v =7, accord-
ing to whether the first or the second interval is
considered. !

Then one easily proves by induction that f ™ gl

™, ™ g™, and B =" for n < ¢ are majorized
by a constant C in the intervals considered in (6),

910 J. Math. Phys., Vol. 19, No. 4, April 1978

according to the specifications made there; in addition
b, ¢ and f‘™ have an even character for x — 0,
where ¢, d'™, and B =C“"*D have an odd charac-
ter in the same limit.

Ip. Cazzola, L. Lucaroni, and R. Semenzato, J. Math. Phys.
19, 237 (1978).

For the definition of Wy, W, see (1.3.19) [paper Iabove, Eq.
(3.19)1.

3P. Cazzola and L. Lucaroni, Phys. Rev. D 6, 950 (1972).

‘R.G. Newton, J. Math. Phys. 1, 319 (1960),
5T. Regge, Nuovo Cimento 9, 295 (1958).

SHere and in the following C or Cy, C,,- -+ denote positive
w~independent constants.

"One easily verifies that the normalization for z defined in (3)
in the limit »— 0 coincides with the one given by (5.1) and
(5.3).

®Equation (6.7) holds with the exception of those values of w
in the real axis for which n{®(+y) vanishes; but these never
coincide with the eigenfrequencies in which we are interested.
L, Battiston, P. Cazzola, and L. Lucaroni, Nuovo Cimento
B3, 295 (1971),

Y0%e note that 2) can be verified by inspection, whereas &},
&%, A, v are even functions of » in a neighborhood of =0 as
a consequence of the equilibrium equations. 3) follows from
the above statement and from the definite parity character
of the coefficients of the coupled equations (I.2.10) and
(1.2.23).

yor the integrals involved in our problem 4), 7) can be
verified by inspection. As regards 5), 6), 8), 9) it is evident
that, even if they do not hold, the above formulas are valid
up to a certain order of approximation such that, at any step,
the coefficients of the cited byproducts in the remainders
are finite. Since in the calculation of the integrals involved
in Secs. 5 and 7 it is sufficient to consider the lowest order
approximations, we can see hy inspection that the above con-
ditions are satisfied. The remainders are then majorized
according to standard procedures developed in paper I or in
Sec. 3, and are shown to be negligible.
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Diffraction by two parallel slits in a plane
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The diffraction of scalar waves by two parallel slits in a plane screen is examined by a method which uses
orthogonal functions and Fourier transformations. A solution is obtained in the case of a perfectly soft
screen. Numerical results of the plane wave transmission coefficients for normal incidence are given for
k =0.2~4.0 and D =3~10, where k is the wavenumber and D is the distance between slits.

1. INTRODUCTION

The present paper deals with the diffraction of scalar
waves by two parallel slits in a plane screen. In
contrast to the case of the diffraction by a single slit,
there have been relatively few investigations on this
problem. This is because of the theoretical difficulties
due to interaction between slits, So far as we are aware,
no exact solution is known. As approximate methods,
there are the Kirchhoff-type approximation, the Keller
geometrical theory of diffraction!*? and the method of
Weber —Schafheitlin integrals,® which are invalid for
small values of the wavenumber and of the distance
between slits. Sachdeva and Hurd* obtain a solution
which are valid for small values of these parameters,
but some of their numerical results are doubtful.?®

We examine this problem by a method which is based
on the use of Fourier transformations of the functions
with the bounded support and the expansions by an
orthogonal set of functions. This method is efficient for
small k£ and D and has been successfully applied to the
problem of the diffraction by a slit. ®

2. THEORY

Suppose the perfectly soft screen contains two
parallel slits of the width 2 and choose a rectangular
coordinate system so that the screen coincides with the
plane z =0 and the center lines of the slits are given
by x=a+1 and x =a - 1 respectively (see Fig. 1). Let
the primary field ¢, which has no y variation be incident
from the left (z<0), then the total field y is expressed
as

(j)o(X,Z)— ¢0(xa - z)+ ¢(x: ‘Z) (Z< 0),
Uy, 2)= (1)
d(x, 2) (z>0),

where ¢, to be defined for 2> 0 only, is given by a
solution of the following boundary value problem?:

3% 8% | .,
<5}3+&-2'+k>¢=0 (z>0), (2)
=0 (2=0, |x|<a, |x|>a+2), (3)

3¢ 99, _
a—z»"—i—f(x)

3= (2=0, a< |x|<a+2), (4)

where k is the wavenumber. Since we discuss a steady-
state problem, the time factor exp(- iwt) is omitted
throughout. By introducing new variables

Xy=x—-a-1, x,=x+a+1 (5)

and new functions
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0022-2488/78/1904-0911$1.00

ACH) (‘x1|<1)9
flx)= (6)
fz(xz) (,x2l<l)’

Eq. (4) is written
sp Pit) =0 [n<), o
0z £lx,) (z=0, |x,|<1).

The wave equation (2) is separable, and we can
assume the following expression as a solution:

olx,2) = ..EOAJ_:U"(S) explisx,) exp[— (s? — k) ?z]ds

(8)
+ZgB"f_: U (s)explisx,) expl - (s* - 2%)'/%z]ds,
=

where A, B,, and U, (s) are determined from the
boundary conditions. Substituting this solution into
Egs. (3) and (7), we have
E(,)A"f_wUn (s)explisx,)ds

+ 2B, [ ~U,(s) explisx,) ds =0 (9)

(x|<a, |x|>a+2)

and

EéA" f_.: (s® =k*Y2U (s) explisx,)ds

a+2

a+!

£ a
0 ? z

-a

-a-1

-a-2

FIG, 1, Configuration of two slits.
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+§an_:(s2 - k52U (s) explisx,)ds )
(10

"f1(x1) (Ix1|<1),
_fz(xz) ({x2‘<1),
respectively.

Noting that the integrals in Eq. (9) have a form of the
Fourier transform, we introduce a complete ortho-
normal set of functions {u,(x)} (IxI<1, n=0,1,2,-++)
which belongs to the weight function w(x) and define a
a sequence of functions v (x) as

0 (|x|> 1),
wlhu,(x) (Jx|<1).

If we assume that the functions U, (s) are the Fourier
transforms of v (x), that is,

v,(x)=0 {11)

Uls)= f: v, (%) exp(~isx)dx

(12)
= f_llw(x)un(x)exp(— isx)dx,
then the inversion formula
S U,(s) explisx)ds = 21v,(x) (13)

and Eq. (11) show that one of the boundary conditions
(9) is automatically satisfied.

Another boundary condition (10) is written by the use
of Eq, (58):

i]: (s* = £*)/?U (s) explisx,)

x [A,+ B, exp(isD)]ds (14)
=-f,x,) (le‘< 1),

D[

- *)2U (s) explisx,)

3

x[A exp(~isD)+ B lds
== f5(x,) (Ile< 1),

where D=2(a+1), We expand the functions exp(isx;) and
flx,) in Eq. (14) in terms of « _(x,), obtaining

(15)

explisx, )— E‘”( Yu,(x;) (18)
with

ED(s)= [, (e, (x) explisx) dx = U (~s) (1)
and

—f1(x1):§90 FOu (x)) (18)
with

F=- f.i wiehu, () f,(x) dx, (19)

respectively. Substituting these results into Eq. (14)
and changing the order of summation and integration,
we have an infinite set of linear equations

L\’ja

0 mnAn+errB F(l) :0,1,2, "'), (20)

i
<

n
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where
f (s* = B*) /23U (- s)U,(s)ds 1)
—f YU (), (=8) + U (=) (s)]ds =P,
and
Q= | (* =&V 12U_(= $)U,(s) explisD)ds. (22)
Similarly, we have from Eq. (15)
rg mnAn+Pman F::) (m::O,l,Z,"'), (23)
where
f (s* = E*)/?U (- s)U (s)exp(-isD)ds =@,  (24)
and
Fff’:-f_iw(x)u ) folx)dx. (25)

By solving Egs. (20) and (23), the coefficients A and B,
are determined so that another boundary condition (10)
is satisfied and the solution for the problem is formally
obtained.

When the distance between the slits is sufficiently
large, that is, D—~~, we have by the Riemann—
Lebesgue theorem

an :Rmn =0.
Then Eqgs. (20) and (23) reduce to

iljrrm“l:-x:Fr(nl) (m:O’ 1’ 2"“) (26)
n=0

and
’,Z:épmsnspgy (m=0,1,2,-+-), (27

respectively, which show that the unknowns A, and B,
are determined independently and hence the solution
is expressed as the algebraic sum of the solutions for
the individual slits.*

3. CALCULATION OF P,,, AND Q,,,

From Eqgs. (8), (11), and (13) we have for the
aperture field

olx,0)= 2Tri{) [A e e (xy) + B aw(x,) u (x,)]

X 1<, x| < 1),

For numerical calculation, it is convenient to choose
the functions w(x) and u,(x) so that the above series
converges rapidly. Consulting the results for a slit,
we take the following functions:

u"(x):[r‘(n+ 2)/\/_2—r(n+%)]P’<21/2.1/2)(x)
(n=0,1,2,...),

{28)
(1 - x2)H/2, (29)

where P{'/2:1/2(y) are the Jacobi polynomials defined
by

w(x)=

(=11 = x®)71/2 ar

Gy e T G0)

Pu/z D ()=
Then Egs. (12), (21), and (22) become
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U,(s)=(2mY (= )" + 1Wnnls)/s, (31)

P,,=C, [ (s* -k %[J,, (s) dnsi(s)/s%]ds (32)
and

@ = Cm,,f:(s2 &%) 2cosDdJ . (sM,,, (s)/s?]ds

+ D,,mj:(s2 -E®)'/%sinDs(J,, , (sW,,,(s)/s*]ds,
(33)
respectively, where
C,.=2m"" [(~ 1"+ (- 1)"] (m + 1)(n +1), (34)
D, =2mi" " (- 1) - (- 1)"][(m + 1)(n +1). (35)

Note that C, are real and equal to zero if m +n are

odd and D, are real and equal to zero if m +n are
even, The integrals of Eqs. (32) and (33) are convergent
and we have (see Appendix)

P,y =47%/2(= D[(= D"+ (= 17im + 1) +1)

% 5+ S S P, (36)
_i% i)Pa(u,V)] (m+n=2x, A=0, 1,2, +++),
P,=0 (m+n=2x+1, x=0,1,2,--+), (37)
and
Q= 573(= DA [(= )™ + (= 11")(m + D + 1)
w HPA © -o
X| 2220 )+ 2 Qi) (38)
=0 v=0 r=0 ¥=0

_iS i)Qa(u,V)] (m+n=2r, A=0,1,2, ),

Q,, = (=1 [(- D" = (= 1)"}(m + 1} +1)
[” 53 Q)+ 3 5@y, v) (29)

=0 y=0

—-iy Z}Qs(u. u)] (m+n=2x+1, x=0,1,2,--),

p=0p=0

8

where

(1T (u-v+a+1) (RN
P, v)=Cylu,V) o T T T = 7 7379 (E) ’

P, v)=G,{p,v)

(=12 (u,v)
F(u+v+x+2)r(u+n+2)r( w-v=x+1/2)

k 2(p +paAtl)
(&)

(=1 (W + v +x+1/2) (R\*ovaeD
T(u+v+2x+2)Tw+n+2)\2 ’

(=)D (u-v+a+1)
Tv-p-a-1/2)I(-v+3/2)

2y
x (g_) DAy

Pg()uy V):GI(P-, V)

Ql(uyu)zcz(#sy)

Q1, ) =G,lu,v)
(= DM, v)
I'(p.+u+x+2)1"(v+1/2)r( h—v-rx+1/2)
913 J. Math. Phys., Vol. 19, No. 4, April 1978

2{peyars )
e

@1, v)=Gy(u,v)

NG i SR AR 1/2)<]3\)2(“““ " pe
T +1/2)T(L+v+r+2)\2 ,

Q4(“!V)=Ga(“'1y)

x (_l)utvr(ﬂ_ V+>\+2) <E>2v
F(v-u-2=-3/2)T(-v+3/2)\2

2(v=u=r=3/2)
xD s

Qi (1, v)=G,(i,v)

% (= D) 'y, v)
T(u+v+r+3)I(v+1/2)T{(—pu—v—-2»

B\ 2(utvert2)
X(—— D2v’1
2 )

QG(U', V)= Ga(l“', V)

(=1)#"D(u+v+a+3/2)
Tv+3/2)T(u+v+ar+3)

k 2(uty*art2)
X E D2v*1,

-1/2)

1
T+ (p+m+2Tw+1)’

Gl(‘l, V)"_-

G,(u,v)
_ T'(2u+2x +3) ,
T+ (p+m+2)T (e +n+2)T(n+ 22+ 3T + 1)

Gylu,v)

_ T2u+2x +4) ,
T+ DT (p+m+ 2T+ n+2)T (L + 22 +4)T(v + 1)

D, M==pv+1) =P +v+r+2)=Pv+n+2)

+y(=p-v-a+1/2) +2loglk/2),
Ul V) ==+ 1) = plu+ v+ 2 +2) =Py +3)

+ (= =v=2+1/2)+2log(kD/2),
Uglit, V)= = P+ 1) =P+ v + A +3) = g(v +3)

+ (= p ~1/2) + 2 log(kD/2),

—-V=2A
and
Plx)=3dlogl(x)/3x.

4. TRANSMISSION COEFFICIENT
The transmission coefficient is given by®

Im{J; .2+I“'2 *(x,0)3p(x,0)/02dx

t= Im(f 2+ [ )03 (x,000¢,(x,0 Y 3z dx

(40)

where the asterisk indicates the complex conjugate.
Assuming that the function w(x) and u (x) are real, we
have by Egs. (8), (11), and (13)

¢*(x,0)= an[A:w(xl)u"(x,) + BXw{xahu,(x,)]

(|x, <1, [x,[<D. @D
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TABLE 1, Plane wave transmission coefficients ¢ of two slits
for normal incidence (k: wavenumber, D: distance between
slits).

k HD=3) tHD=4) HD=6) tD=10) {(D=w)

0.2 0.00586  0,00541  0.00487  0,00387  0.00262
0.4 0,04910  0,04103  0,03055  0,02192 002392
0.6 0,15437  0,11738  0.08716  0,08702 0, 09484
0.8 0,31068  0,24173  0,22697  0,27763  0,26059
1.0 0,50912  0.,45359  0,56886  0,53911  0.54540
1,2 0,74825  0,78565  0,99005  0,88710  0,87693
1.4 0,98583  1,18460  1,11409  1,14506  1,11719
1.6 1.16595  1,37724  1.20077  1,21146  1.21668
1.8 1,26098  1,29857  1,22779  1,23178  1,22129
2.0 1.25712  1,18083  1,20493  1,18792  1,18426
2,5 1,06815  1,04923  1,05536  1,06670  1,06380
3,0 0,96158  0,97605  0,97431  0,97260  0,97202
From Egs. (4), (7), and (18)

-2 Fu,e) <1,
0
39(x,0) _2¢y(x,0) _ (42)
0z 0z -
(
= FPu,(c) |x|<1.

Substitution of Eqs. (41) and (42) into Eq. (40) yields

~ IS (AL FI + BEFD)
b A L, + I D6k (x, 0V (1) (43)

For a case of normal incidence of a plane wave,
p,=explikz) and flx)=ik. (44)
We find from Eqs. (19), (25), (28), and (29)
FO=F® = ~jk(@/2)'/? and FP=F2=0 (m=1). (45)

Hence we obtain

t=(r/2)*/2Re(4,+B,). (46)
Numerical values of ¢ calculated from Eq. (46) are
given in Table I for D=3,4,6,10, and «, where we
solve a finite set of equations

T(P A +Q B)=F (m=0,1,2,"",9),

mn ' n mn n

T(Q A+ P

nm n mn - n

B)=F® (m=0,1,2,",9),

instead of Eqs. (20) and (23).

5. DISCUSSION

Our method consists of reducing the boundary value
problem to a pair of infinite sets of linear algebraic
equations and solving it, On these procedures we

note the following, which require further investigations:

(a) The coefficients of the infinite sets of equations

are given by Egs. (32) and (33), which contain integrals
over Bessel functions. These integrals are evidently
convergent for any values of parameters and can be
computed by numerical integration. In this paper we
use the series representations (36)—(39) for the
coefficients, which are expected to converge for

all values of # and D. Though rigorous proof is not

given, the derivation of these series from their integral

914 J. Math. Phys., Vol. 19, No. 4, April 1978

forms supports this conjecture. (b) We examine the
rate of convergence of Egqs, (36)—(39) by numerical
computation. As may be expected, the rate of conver-
gence is good for small values of 2 and D only. For
k=3 and D =10, for example, we need to set

0< u,v <60 to obtain eight significant figures of the
result. The values of the coefficients are checked by
hand and by numerical integration of Eqs. (32) and (33).
(c) We have not been able to prove that the infinite set
of equations has a unique solution. What we do in this
paper is to solve the truncate set of equations

Wy

(P, A +Q, B)=F" (m=0,1,2,+-- N)

mn n b

[
=}

n

=

2(QA,+P,,B,)=FD

n=

(m:O’ 1,2, ",N),

=}

numerically. We calculate the solutions A and B, for
different values of N and observe that their values con-
verge rapidly as N increases. In the range of k and D in
Table I, N=9 is enough to obtain eight significant
figures.

ACKNOWLEDGMENT

The author is grateful to the referee for his comments
and suggestions.

APPENDIX
(1) We consider the integral
1= f - RAVRJ (s)4(s)/s7 ] ds,

where a=1, 8= 1, and v > 2. Separating it into real and
imaginary parts, we have I=1, - il,, where

11:j:(s2-k2)‘/2[ (sW4(s)/s7)/ds

and

I= [ (6 = 5224 (s My (s)/s7)/ds.

The radiation condition requires that arg(~1)*/?=37/2
throughout this paper. To evaluate the integral
1,, we introduce the representations
3 (= 1)~ CAN
= = 1
7a(s) u=01"(u+1)1"(u+a+1)<2) (A1)
and
1 serei  T(—p)  [s\ @8 o
JB(S);ET?_/‘ ‘ Wﬂ(z) dh {c>0), (A2)
el 1
and obtain

te (1 1\ e e
lz%ﬁr(u+1)r(u+a+1)(§>

—ctei T(-h) l)mx
% [C__,. L P 1)(2

x ‘/:(sz—k

Using the formula

w ﬂl/zf(—p/Z—l) s -
ﬁ (s = k%) /%P ds :mk" (Rep < - 2)
(A3)

2)1/282;”2;.*:1*8-7 ds.
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and setting o +B-y=2x (A =0,1, 2,
p2A*2 [1\ atB = (- 1)~ A
11:@1?1752(5) poD(p+DM(p+a+1) 5)
y /-c’-* T(-RT(=h-p—x=1) (g)z"dh
s THB+T (=0 = -a+1/2)\2

(il 3

. ‘(\, we have

(c>p+r+1),

Straightforward calculation of residues yields the
result,

The integral I, is similarly evaluated by using the
formula

_mrp/2+1/2)
2_ g2)l/ 250 p*2
f (6% - %) s ds = Tar(p/2+2) k

(Rep>=1), (A4d)
instead of Eq. (A3).
(2) The integrals

_ © 2 _ 21/2 (S (s) {cosDs
J-ﬂ(s k%) {sts}ds

are also evaluated by the same procedure, where we
employ the formulas

ERRATA

T (W (s)

f) (=1)*T(@u+a+B+1)
s P+ DT (u+a+ 1D (u+B+1) T (u+a +B+1)

2uta+s
Uk

cosDs = (rDs/2)'/%J., ,,(Ds),

sinDs = (1Ds/2)'/?J, ,,(Ds),
(A8)
and Eq. (A2).
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